一天之内,时针、分针、秒针重合在一起有几次?分别是什么时间?
1个回答
展开全部
如果24点00分算在第二天的话,只有0点00分和中午12点00分两次。 ---以下回答属于原创-未经许可不得转载-by【xfire】--- 对于时针分针秒针重合问题的求解 近来总在论坛上看到有人提问一天中“时针分针秒针重合的次数”的问题,看到的解答都太不严谨。不得不给一个标准 以12小时为例,问题为:从开00:00:00到闭12:00:00时间段内,时针分针秒针重合的次数有多少次?各是何时? 因为00:00:00和12:00:00都是此问题的解,考虑到周期的原因,故把两个端点只取一个做成求解区间。 先考虑时针和分针重合的情形: 假设某一时刻时针和00:00:00时针的顺时针方向夹角为x度,则此时分针和00:00:00时针的顺时针方向夹角为12x-n*360度(n为使12x-n*360大于0且小于等于360的最小自然数)。 那么根据条件就有方程:x=12x-n*360 (n同上) 则此方程解为: x= 360/11, 720/11, 1080/11, 1440/11, 1800/11, 2160/11, 2520/11, 2880/11, 3240/11, 3600/11, 3960/11 即约x= 32.7, 65.5, 98.2, 130.9, 163.6, 196.4, 229.1, 261.8, 294.5, 327.3, 360 对应的时间t(秒):t=x/360*12*60*60,约为: 3927.3, 7854.5, 11781.8, 15709.1, 19636.4, 23563.6, 27490.9, 31418.2, 35345.5, 39272.7, 43200.0 即 1:5:27.3, 2:10:54.5, 3:16:21.8, 4:21:49.1, 5:27:16.4, 6:32:43.6, 7:38:10.9, 8:43:38.2, 9:49:5.5, 10:54:32.7, 12:0:0 考虑此时秒针位置,其对应的角度s(度)为:s=(t-floor(t,60))/60*360,(floor为取整函数),约为: 163.6, 327.3, 130.9, 294.5, 98.2, 261.8, 65.5, 229.1, 32.7, 196.4, 360 可见只有最后一个位置重合,即三针同为360度时,也即12:00:00时重合。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询