为什么f(x)=π/2?
1个回答
展开全部
证明过程如下:
设f(x)=arctanx+arctan1/x (x>0)
f'(x)=1/(1+x²)+1/[1+(1/x)²]×(1/x)'
=1/(1+x²)+1/[1+(1/x)²]×(-1/x²)
=1/(1+x²)-1/(1+x²)
=0
所以f(x)在x>0上为常数函数
在x>0上任意取一个x,特别地 ,令x=1,f(x)=π/2
所以f(x)=π/2
扩展资料:
函数y=f(x)在x0点的导数f'(x0)的几何意义表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询