求积分:∫1+sinxdx+lnxd
1个回答
展开全部
用课本上的方法,secx=1/cosx=(cos^2(x/2)+sin^2(x/2))/(cos^2(x/2)-sin^2(x/2))=(1+tan^2(x/2))/(1-tan^2(x/2))
设tan(x/2)=t
原积分=∫(1+t^2)/(1-t^2)d(2arctant)=∫2dt/(1-t^2)=∫(1/(1-t)+1/(1+t))dt=-ln(1-t)+ln(1+t)+C,代入=tan(x/2)即可求得
这个方法可以求所有仅含有三角函数的积分
设tan(x/2)=t
原积分=∫(1+t^2)/(1-t^2)d(2arctant)=∫2dt/(1-t^2)=∫(1/(1-t)+1/(1+t))dt=-ln(1-t)+ln(1+t)+C,代入=tan(x/2)即可求得
这个方法可以求所有仅含有三角函数的积分
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询