怎样判断奇偶性的方法
展开全部
奇偶性
1.定义
一般地,对于函数f(x)
(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数.
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数.
说明:①奇、偶性是函数的整体性质,对整个定义域而言
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数.
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
③判断或证明函数是否具有奇偶性的根据是定义
2.奇偶函数图像的特征:
定理 奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形.
f(x)为奇函数《==》f(x)的图像关于原点对称
点(x,y)→(-x,-y)
奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增.
偶函数 在某一区间上单调递增,则在它的对称区间上单调递减.
单调函数
一般地,设函数f(x)的定义域为I:
如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1
1.定义
一般地,对于函数f(x)
(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数.
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数.
说明:①奇、偶性是函数的整体性质,对整个定义域而言
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数.
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
③判断或证明函数是否具有奇偶性的根据是定义
2.奇偶函数图像的特征:
定理 奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形.
f(x)为奇函数《==》f(x)的图像关于原点对称
点(x,y)→(-x,-y)
奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增.
偶函数 在某一区间上单调递增,则在它的对称区间上单调递减.
单调函数
一般地,设函数f(x)的定义域为I:
如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2022-12-02 · 百度认证:北京惠企网络技术有限公司官方账号
关注
展开全部
一、单调性判断法
1、若在对称区间上的单调性是相反的,则该函数为偶函数。
2、若在整个定义域上的单调性一致,则该函数为奇函数。
二、复合函数判断法
可将函数拆分为两个函数,根据这两个函数的特性判断原函数的奇偶性:
1、 两个偶函数相加所得的和为偶函数。
2、 两个奇函数相加所得的和为奇函数。
3、两个偶函数相乘所得的积为偶函数。
4、 两个奇函数相乘所得的积为偶函数。
5、一个偶函数与一个奇函数相乘所得的积为奇函数。
6、偶函数的和差积商是偶函数。
7、奇函数的和差是奇函数。
三、绝对值判断法
1、奇函数的绝对值为偶函数。
2、偶函数的绝对值为偶函数。
扩展资料
函数奇偶性中的奇偶数
若数字满足xmod2=1,那么它是奇数。
若数字满足xmod2=0,那么它是偶数。
例如:m=xmod2 ,x=7的话,m=1
参考资料来源:百度百科-奇偶性
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询