x²+3x-4≤0解不等式

 我来答
帐号已注销
2022-10-15 · TA获得超过182个赞
知道小有建树答主
回答量:1189
采纳率:97%
帮助的人:33.3万
展开全部

解:不等式为x²+3x-4≤0,化为(x+4)(x-1)≤0,得:

-4≤x≤1

请参考

含有未知量的等式就是方程了,数学最先发展于计数,而关于数和未知数之间通过加、减、乘、除和幂等运算组合,形成代数方程:一元一次方程,一元二次方程、二元一次方程等等。然而,随着函数概念的出现,以及基于函数的微分、积分运算的引入,使得方程的范畴更广泛,未知量可以是函数、向量等数学对象,运算也不再局限于加减乘除。

方程在数学中占有重要的地位,似乎是数学永恒的话题。方程的出现不仅极大扩充了数学应用的范围,使得许多算术解题法不能解决的问题能够得以解决,而且对后来整个数学的进展产生巨大的影响。特别是数学中的许多重大发现都与它密切相关。例如:
对二次方程的求解,导致虚数的发现;
对五次和五次以上方程的求解,导致群论的诞生;
对一次方程组的研究,导致线性代数的建立,对多项式的研究,导致多项式代数的出现;
应用方程解决几何问题,导致解析几何的形成等等。

中学阶段接触到方程基本都在这个范畴,方程中的未知数,可以出现在方程中的分式、整式、根式以及三角函数、指数函数等初等函数的自变量中。

在中学阶段遇到方程求解问题,一般地,可将方程转换为整式方程;一般都是转换为一元二次方程,或者多元一次方程组的求解问题。

区别于上述方程,方程中的未知量是函数本身,而非函数的自变量;运算涉及到加减乘除以及函数复合。

针对函数方程的求解问题,还没有统一的理论和一般的方法。对于部分函数方程可以考虑:
代换法
柯西解法:依次对自变量取自然数、整数值、有理数、直至所有实数求得函数值的方法。一般会在函数连续、单调等条件下限定求解范围。

自从数学从常量数学转变为变量数学,方程的内容也随之丰富,因为数学引入了更多的概念,更多的运算,从而形成了更多的方程。其他自然科学,尤其物理学的发展也直接提出了方程解决的需求,提供了大量的研究课题。

上海华然企业咨询
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步... 点击进入详情页
本回答由上海华然企业咨询提供
教学达人陈老师
2022-10-15 · 超过31用户采纳过TA的回答
知道答主
回答量:552
采纳率:66%
帮助的人:15.6万
展开全部
(x+4)(x-1)小于等于0
-4小于等于x小于等于1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式