t/(t^2-t+1)的积分

 我来答
白露饮尘霜17
2022-09-06 · TA获得超过1.2万个赞
知道大有可为答主
回答量:6822
采纳率:100%
帮助的人:37.6万
展开全部
根据有理分式积分,分母的⊿<0,所以首先将分母配方:
t^2-t+1=(t-1/2)^2+3/4=3/4((2√3/3t-√3/3)^2+1)
这就将积分化为形如:∫x/(ax-b)^2+c dx的通用积分形式
∫t/(t^2-t+1) dt=∫[√3/2d(2√3/3t-√3/3)]/[3/4((2√3/3t-√3/3)^2+1)]
=2√3/3arctant(2√3/3-√3/3)+C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式