如何求曲线或者立体的质心的公式?
质心的公式:
Rc=m1r1+m2r2+m3r3+./∑m
对于封闭区域D,密度公式为F(x,y),求质心公式如下
这是求质心的x坐标,求另外一个坐标类似。同时,这个公式可以推广到多元函数求积分,原理依然是要求的坐标乘以密度公式积分除以密度公式做积分
扩展资料
设n个质点组成的质点系 ,其各质点的质量分别为m1,m2,…,mn。若用 r1 ,r2,……,rn分别表示质点系中各质点相对某固定点的矢径,rc 表示质心的矢径,则有rc=(m1r1+m2r2+……+mnrn)/(m1+m2+……+mn)。
当物体具有连续分布的质量时,质心C的矢径 rc=∫ρrdτ/∫ρdτ,式中ρ为体(或面、线)密度;dτ为相当于ρ的体(或面 、线)元 ;积分在具有分布密度ρ的整个物质体(或面、线)上进行。
由牛顿运动定律或质点系的动量定理,可推导出质心运动定理:质心的运动和一个位于质心的质点的运动相同,该质点的质量等于质点系的总质量,而该质点上的作用力则等于作用于质点系上的所有外力平移 到这一点后的矢量和 。由这个定理可推知:
①质点系的内力不能影响质心的运动。
②若质点系所受外力的主矢始终为零,则其质心作匀速直线运动或保持静止状态。
③若作用于质点系上外力的主矢在某一轴上的投影始终为零,则质心在该轴上的坐标匀速变化或保持不变。