正态分布的期望值怎么求?
1个回答
展开全部
Φ(x)=1/2+(1/√π)*∑(-1)^n*(x/√2)^(2n+1)/(2n+1)/n! 其中n从0求和到正无穷因为正态分布是超越函数,所以没有原函数,只能用级数积分的方法。
称其分布为高斯分布或正态分布,记为N(μ,σ2),其中为分布的参数,分别为高斯分布的期望和方差。当有确定值时,p(x)也就确定了,特别当μ=0,σ2=1时,X的分布为标准正态分布。
μ正态分布最早由棣莫佛于1730年在求二项分布的渐近公式时得到;后拉普拉斯于1812年研究极限定理时也被引入。
扩展资料
标准正分布的性质:
1、密度函数关于平均值对称
2、平均值与它的众数(statistical mode)以及中位数(median)同一数值。
3、函数曲线下68.268949%的面积在平均数左右的一个标准差范围内。
4、95.449974%的面积在平均数左右两个标准差的范围内。
5、99.730020%的面积在平均数左右三个标准差的范围内。
6、99.993666%的面积在平均数左右四个标准差的范围内。
7、函数曲线的反曲点(inflection point)为离平均数一个标准差距离的位置。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询