为什么函数连续但不可微呢?

 我来答
小溪趣谈电子数码
高粉答主

2023-01-15 · 专注解答各类电子数码疑问
小溪趣谈电子数码
采纳数:2103 获赞数:584850

向TA提问 私信TA
展开全部

由可导与连续的关系:“可导必定连续,连续不一定可导”可知,函数f(x)在点x=x₀处连续是f(x)在x₀处可导的必要非充分条件。

函数在某点可导的充要条件是左右导数相等且在该点连续。显然,如果函数在区间内存在“折点”,(如f(x)=|x|的x=0点)则函数在该点不可导。

扩展资料:

关于函数的可导导数和连续的关系:

1、连续的函数不一定可导。

2、可导的函数是连续的函数。

3、越是高阶可导函数曲线越是光滑。

4、存在处处连续但处处不可导的函数。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式