e^xy+x+y=2求dy/dx |x=1

 我来答
机器1718
2022-09-06 · TA获得超过6832个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:160万
展开全部
f(x,y)=e^xy+x+y=2求全微分 (Df/Dx)dx+(Df/Dy)dy=0dy/dx=-(y*e^xy+1)/(x*e^xy+1)如果 x=1dy/dx |x=1 = -(ye^y+1)/(e^y+1)其中y为 f(1,y)=2 的解,即y满足 e^y+1+y=2=>e^y+y=1 => y=0 (这是特殊情况,一般此类方程没有...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式