勾股定理的证明方法
1个回答
展开全部
简单的勾股定理的证明方法如下:
做8个全等的直角三角形,设它们的两条直角边长分别为碰游a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,段神把它们像上图那样拼成两衫袜雹个正方形。
发现四个直角三或帆角形和一个边长为a的正方形和一个边长为b的正方形,刚好可以组成边长握吵亏为(a+b)的正方形;四个直角三角形和一个边长为c的正方形也刚好凑成边长为(a+b)的正方形。
所以可以看出以上两个大正方形面积相等。 列出式子可得:
拓展资料:
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最好模重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
参考资料:勾股定理_百度百科
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
您可能需要的服务
百度律临官方认证律师咨询
平均3分钟响应
|
问题解决率99%
|
24小时在线
立即免费咨询律师
11415人正在获得一对一解答
合肥云端漫步2分钟前提交了问题
杭州雪花飘飘5分钟前提交了问题
南京彩虹之旅3分钟前提交了问题