展开全部
根据题目,有 $f(x)=[g(x)-g(x_0)]\cdot \phi(x)$,其中 $g(x)$ 和 $\phi(x)$ 在 $x_0$ 处连续。要求 $f(x_0)$,可以将 $x$ 替换为 $x_0$,得到:$$f(x_0)=[g(x_0)-g(x_0)]\cdot \phi(x_0) = 0.$$因为 $g(x)$ 和 $\phi(x)$ 在 $x_0$ 处连续,所以 $f(x)$ 在 $x_0$ 处也连续,因此 $f(x_0)$ 存在且等于 $0$。因此,$f(x_0)=0$。
可以使用导数的定义来求函数在某一点的导数。设函数 $y=f(x)$,在点 $x_0$ 处的导数定义为:
$$
f'(x_0)=\lim_{\Delta x\to 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}.
$$
其中 $\Delta x$ 表示 $x$ 的增量,即 $\Delta x = x - x_0$。
要求函数在 $x_0$ 处的导数,按照上述定义可以进行以下步骤:
1. 计算出 $\Delta x$ 的极限值,即 $\Delta x \to 0$。
2. 计算出 $f(x_0+\Delta x)$ 和 $f(x_0)$ 的差值,即 $f(x_0+\Delta x)-f(x_0)$。
3. 将步骤 1 和步骤 2 的结果代入导数的定义式中,计算出导数。
例如,对于函数 $f(x)=x^2$,要求在点 $x_0=2$ 处的导数,可以按照如下步骤进行:
1. 令 $\Delta x = x - x_0$,则 $\Delta x \to 0$ 时,有 $\Delta x \to 0$。
2. 计算出 $f(x_0+\Delta x)-f(x_0)$,即 $f(2+\Delta x)-f(2)=(2+\Delta x)^2-2^2=4\Delta x + \Delta x^2$。
3. 将步骤 1 和步骤 2 的结果代入导数的定义式中,得到:
$$
\begin{aligned}
f'(2) &= \lim_{\Delta x\to 0}\frac{f(2+\Delta x)-f(2)}{\Delta x} \\
&= \lim_{\Delta x\to 0}\frac{4\Delta x + \Delta x^2}{\Delta x} \\
&= \lim_{\Delta x\to 0}(4 + \Delta x) \\
&= 4.
\end{aligned}
$$
因此,函数 $f(x)=x^2$ 在点 $x_0=2$ 处的导数为 $f'(2)=4$。
可以使用导数的定义来求函数在某一点的导数。设函数 $y=f(x)$,在点 $x_0$ 处的导数定义为:
$$
f'(x_0)=\lim_{\Delta x\to 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}.
$$
其中 $\Delta x$ 表示 $x$ 的增量,即 $\Delta x = x - x_0$。
要求函数在 $x_0$ 处的导数,按照上述定义可以进行以下步骤:
1. 计算出 $\Delta x$ 的极限值,即 $\Delta x \to 0$。
2. 计算出 $f(x_0+\Delta x)$ 和 $f(x_0)$ 的差值,即 $f(x_0+\Delta x)-f(x_0)$。
3. 将步骤 1 和步骤 2 的结果代入导数的定义式中,计算出导数。
例如,对于函数 $f(x)=x^2$,要求在点 $x_0=2$ 处的导数,可以按照如下步骤进行:
1. 令 $\Delta x = x - x_0$,则 $\Delta x \to 0$ 时,有 $\Delta x \to 0$。
2. 计算出 $f(x_0+\Delta x)-f(x_0)$,即 $f(2+\Delta x)-f(2)=(2+\Delta x)^2-2^2=4\Delta x + \Delta x^2$。
3. 将步骤 1 和步骤 2 的结果代入导数的定义式中,得到:
$$
\begin{aligned}
f'(2) &= \lim_{\Delta x\to 0}\frac{f(2+\Delta x)-f(2)}{\Delta x} \\
&= \lim_{\Delta x\to 0}\frac{4\Delta x + \Delta x^2}{\Delta x} \\
&= \lim_{\Delta x\to 0}(4 + \Delta x) \\
&= 4.
\end{aligned}
$$
因此,函数 $f(x)=x^2$ 在点 $x_0=2$ 处的导数为 $f'(2)=4$。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询