液电介质中气体对其电击穿有何影响?
液电介质中气体对其电击穿的影响,经多掘纯次作用会使固体介质出现分层、开裂现象,放电有可能在固体介质内发展,绝缘结构的击穿电压因此下降。
在足够强的电场作用下,液体电介质失去绝缘能力而由绝缘状态突变为良导电状态。纯净液体电介质与含杂质工程液体电介质的击穿机理不同。
对纯净液体电介质,有两种阐述击穿过程的理论──电击穿理论和气泡击穿理论;对工程液体电介质的击穿过程可用气体桥理论解释。沿着液体和固体电介质分界面的放电现象称为液体电介质中的沿面放电,它具有自己的规律性。
脉冲电压下液体电介质击穿时,常出现强力气体冲击波(即电水锤),可用于水下探矿、桥墩探伤及人体内脏结石的体外破碎等。
电击穿,液体电介质的分子因电子碰撞而电离是电击穿理论的基础。纯净的液体电介质中总会存在一些离子,它们或由液体分子受自然界中射线的电离作用而产生,或由液体中微量杂质受电场的解离作用而产生。
对纯净的液体电介质施加电压,液体中的离子在电场作用下运动而形成电流。电场较弱时,随电压的上升,电流呈线性增加。当电场逐渐增强时,由于越来越多的离子已参与了导电,随着电压的进一步升高,电流呈现出不十分明显的饱和趋向。
当电场强度超过1MV/cm时,液体电介质中原有的少量自由电子,以及因场致发射或因强电场作用增强了的热虚散念电子发射而脱离阴极的电子,在电场作用下运动、加速、积累能量、碰撞液体分子,而且以一定的概率使液体电介质的分子电离。
只要电场足够强,电子在向阳极运动差困的过程中,就不断碰撞液体分子,使之电离,致使电子迅速增加。因碰撞电离而产生的正离子移动至阴极附近,增强了阴极表面的场强,促使阴极发射的电子数增多。这样,电流急剧增加,液体电介质失去绝缘能力,发生击穿。
2023-06-12 广告