二元一次方程组的解法

 我来答
失心疯丶ii
2023-04-15 · 超过143用户采纳过TA的回答
知道小有建树答主
回答量:1345
采纳率:100%
帮助的人:28万
展开全部

二元一次方程组的解法:

一、代入消元法

(1)从方程中选一个系数比较简单的方程,将这个方程中的未知数用另一个未知数的代数式来表示,如用x表示y,可写液余核成y=ax+b。

(2)将y=ax+b代入另一个方程,消去y,得到一个关于x的一元一次方程。

(3)解这个一元一次方程,求出x的值。

(4)把求得的x的值代入y=ax+b中,求出y的值,从而得到方程组的解。

二、加减消元法

(1)方程组的两个方程中,如果同一个未知数的系毁团数既不互为相反数,也不相等时,可用适当的数乘以方程的两边,使一个未知数的系数互为相反数或相等,得到一个新的二元一次方程组。

(2)把这个方程组的两边分别相加(或相减),消去一个未知数,得到一个一元一次方程。

(3)解这个一元一次方程。

(4)将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解。

一般来说,当方程组中有一个未知数的系数为1(或一1)或方程组中有1个方程的常数项为0时,选用代入消元法解比较简单;当同一个未知闹掘数的系数的绝对值相等或同一个未知数的系数成整数倍时,用加减消元法较简单。

富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式