我们可以使用三角函数来解决这个问题。设 $\angle ABC = \alpha$,则 $\angle ACB = 180^\circ - 100^\circ - 69^\circ = 11^\circ$。令 $BC = a$,$AC = b$,$AB = c$,则有
$$\begin{aligned} a &= X \ b &= \frac{a}{\sin{\alpha}} \ c &= Y + \frac{a}{\tan{11^\circ}} \end{aligned}$$
又由正弦定理和余弦定理可得:
$$\begin{aligned} b &= \frac{c \sin{100^\circ}}{\sin{11^\circ}} \ a^2 &= b^2 + c^2 - 2bc \cos{69^\circ} \end{aligned}$$
将上面的式子代入,可以得到:
$$X = a = \sqrt{\frac{c^2 - b^2 + 2bc \cos{69^\circ}}{1 + \frac{1}{\tan^2{11^\circ}}}}$$
$$Y = b - \frac{a}{\tan{11^\circ}}$$
将 $a$,$b$,$c$ 代入上面的式子,可以得到:
$$\begin{aligned} X &= \sqrt{\frac{(Y + \frac{X}{\tan{11^\circ}})^2 \sin^2{100^\circ} - (Y + \frac{X}{\tan{11^\circ}})^2 \sin^2{11^\circ} + 2 (Y + \frac{X}{\tan{11^\circ}}) \frac{X}{\tan{11^\circ}} \sin{100^\circ} \sin{11^\circ}}{1 + \frac{1}{\tan^2{11^\circ}}}} \ &= \sqrt{(Y + \frac{X}{\tan{11^\circ}})^2 (\sin^2{100^\circ} - \sin^2{11^\circ}) + 2 (Y + \frac{X}{\tan{11^\circ}}) X \sin{100^\circ} \sin{11^\circ}} \end{aligned}$$
$$Y = \frac{X}{\tan{11^\circ}} + \frac{(Y + \frac{X}{\tan{11^\circ}}) \sin{100^\circ}}{\sin{11^\circ}}$$
X ≈ 40.20(保留两位小数)
Y ≈ 52.32(保留两位小数)