2013高考押题密卷(数学)

 我来答
老周在此2333
2023-03-10 · TA获得超过690个赞
知道小有建树答主
回答量:1570
采纳率:100%
帮助的人:110万
展开全部
第Ⅰ卷

一、选择题:本大题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合M={-1,0,1},N={x|x2≤x},则M∩N=
A.{0} B.{0,1} C.{-1,1} D.{-1,0,0}
2.命题“若α=,则tanα=1”的逆否命题是2013年高考试题答案
A.若α≠,则tanα≠1 B. 若α=,则tanα≠1
C. 若tanα≠1,则α≠ D. 若tanα≠1,则α=
3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是2013年高考考点押题

4.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是
A.y与x具有正的线性相关关系
B.回归直线过样本点的中心(,)
C.若该大学某女生身高增加1cm,则其体重约增加0.85kg
D.若该大学某女生身高为170cm,则可断定其体重比为58.79kg
5. 已知双曲线C :-=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C的方程为
A -=1 B -=1 C -=1 D -=1
6. 函数f(x)=sinx-cos(x+)的值域为
A [ -2 ,2] B [-,] C [-1,1 ] D [- , ]
7. 在△ABC中,AB=2 AC=3 ·=
A B C D
8 ,已知两条直线l1 :y=m 和l2 :y=(m>0),l1与函数y=|log2x|的图像从左至右相交于点A,B ,l2 与函数y= y=|log2x|的图像从左至右相交于C,D 记线段AC和BD在X轴上的投影长度分别为a ,b ,当m 变化时,的最小值为2013年高考报志愿
A B C D
二 ,填空题: 本大题共8小题,考生作答7小题,每小题5分 ,共35分,把答案填在答题卡中对应题号后的横线上
(一)选做题(请考生在第9.10 11三题中人选两题作答案,如果全做,则按前两题记分 )
9. 在直角坐标系xOy 中,已知曲线C1:x=t+1 (t为参数)与曲线C2 :x=asin
Y= 1-2t y=3cos
(为参数,a>0 ) 有一个公共点在X轴上,则a 等于 ————
10.不等式|2x+1|-2|x-1|>0的解集为_______.
11.如图2,过点P的直线与圆O相交于A,B两点.若PA=1,AB=2,PO=3,则圆O的半径等于_______

(二)必做题(12~16题)
12.已知复数z=(3+i)2(i为虚数单位),则|z|=_____.
13.( -)6的二项展开式中的常数项为 。(用数字作答)
14.如果执行如图3所示的程序框图,输入x=-1,n=3,则输入的数S=

15.函数f(x)=sin ( )的导函数y=f(x)的比分图像如图4所示,其中,P为图像与轴的交点,A,C为图像与图像与x轴的两个交点,B为图像的最低点。
(1)若,点P的坐标为(0,),则 ABC内的概率为
(2)若在曲线段与x轴所围成的区域内随机取一点,则该点在△ABC内的概率为。
16.设N=2n(n∈N*,n≥2),将N个数x1,x2,…,xN依次放入编号为1,2,…,N的N个位置,得到排列P0=x1x2…xN。将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前个数和后个位置,得到排列P1=x1x3…xN-1x2x4…xN,
将此操作称为C变换,将P1分成两段,每段个数,并对每段作C变换,得到P2当2≤i≤n-2时,将Pi分成2i段,每段个数,并对每段C变换,得到Pi+1,例如,当N=8时,P2=x1x5x3x7x2x6x4x8,此时x7位于P2中的第4个位置。
(1)当N=16时,x7位于P2中的第___个位置;
(2)当N=2n(n≥8)时,x173位于P4中的第___个位置。
三、解答题:本大题共6小题,共75分。解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分12分)
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示。

已知这100位顾客中的一次购物量超过8件的顾客占55%。
(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;
(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率。
(注:将频率视为概率)
18.(本小题满分12分)
如图5,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点。
(Ⅰ)证明:CD⊥平面PAE;
(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积。

19.(本小题满分12分)
已知数列{an的各项均为正数,记A(n)=a1+a2+……+an,B(n)=a2+a3+……+an+1,C(n)=a3+a4+……+an+2,n=1,2,……。
(1) 若a1=1,a2=5,且对任意n∈N﹡,三个数A(n),B(n),C(n)组成等差数列,求数列{an}的通项公式。
(2) 证明:数列{an}是公比为q的等比数列的充分必要条件是:对任意n∈N﹡,三个数A(n),B(n),C(n)组成公比为q的等比数列。
20.(本小题满分13分)
某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件)。已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件。该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为K(K为正整数)。
(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;
(2)假设这三种部件的生产同时开工,试确定正整数K的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案。
21.(本小题满分13分)
在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值。
(Ⅰ)求曲线C1的方程
(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别于曲线C1相交于点A,B和C,D。证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值。
22.(本小题满分13分)
已知函数f(x)=eax-x,其中a≠0。
(1) 若对一切x∈R,f(x)≥1恒成立,求a的取值集合。
(2)在函数f(x)的图像上取定两点A(x1,f(x1)),B(x2,f(x2)(x1<x2),记直线AB的斜率为K,问:是否存在x0∈(x1,x2),使f′(x0)>k成立?若存在,求x0的取值范围;若不存在,请说明理由。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式