求助,请问这题怎么求?
展开全部
c=AB=√2
tanA=2, tanB=3
cosA = 1/√5
tanA + tanB =5
sinA/cosA + sinB/cosB =5
sin(A+B)/(cosAcosB)=5
sin(A+B) =5cosAcosB
sinC =5cosAcosB
AC=b
b/sinB= c/sinC
b/sinB=√2/(5cosAcosB)
b= (√2/5)tanB/cosA
= (√2/5)(3)√5
= (3/5)√10
AC=b=(3/5)√10
tanA=2, tanB=3
cosA = 1/√5
tanA + tanB =5
sinA/cosA + sinB/cosB =5
sin(A+B)/(cosAcosB)=5
sin(A+B) =5cosAcosB
sinC =5cosAcosB
AC=b
b/sinB= c/sinC
b/sinB=√2/(5cosAcosB)
b= (√2/5)tanB/cosA
= (√2/5)(3)√5
= (3/5)√10
AC=b=(3/5)√10
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询