如何用裂项相消法求数列通项公式的项数
展开全部
1/n(n+1)=1/n-1/(n+1)
1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]
1/(√a+√b)=[1/(a-b)](√a-√b)
n·n!=(n+1)!-n!
例子:
具体做法:
裂项相消就是根据数列通项公式的特点,把通项公式写成前后能够消去的情势,裂项后消去中间的部份,到达求和目的1种数列求和方法。先根据通项公式找裂项公式,然后逐项写开,消去。
举个最简单的例子,某1数列的通项公式an=1/[n(n+1)],求其前n项和Sn。其实视察可知an=1/[n(n+1)]=1/n⑴/(n+1),实则上1项的减数等于下1项的被减数,所以二者相加就抵消掉了。因此Sn就是首项的被减数减去第n项的减数,即Sn=1/2⑴/(n+1)。这就是所谓的裂项相消法。
另外还有很多例子,比如分母是连续奇数或连续偶数相乘,或是阶乘,份子是个常数(常常是1)的,都可以采取裂项相消法求解Sn。裂项相消法能到达化繁为简的效果。求Sn前先视察通项公式,如果符合这样特点的就能够用裂项相消法了。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询