不定积分∫xd(ln² x)=?

 我来答
lu_zhao_long
2023-07-28 · TA获得超过1.3万个赞
知道大有可为答主
回答量:1.3万
采纳率:79%
帮助的人:2688万
展开全部
因为
d(ln²x) = 2lnx * d(lnx)
= 2lnx * (1/x) * dx
所以:
∫x * d(ln²x)
=∫x * 2lnx * (1/x) * dx
=∫2lnx * dx
=2∫lnx * dx
对于 ∫lnx * dx,使用分部积分法。设 u = lnx,v = dx。那么,du = 1/x * dx, v = x。则有:
∫lnx * dx = ∫u * dv
= (uv) - ∫v * du
= lnx * x - ∫x * (1/x * dx)
= x * lnx - ∫dx
= x * lnx - x + C 注:C为常数
所以,原不定积分就等于:
∫xd(ln²x) = 2[x(lnx - 1) + C] = 2x(lnx - 1) + C' 注:C' = 2C 也为常数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式