已知,如图,AD平行BC,E是线段CD的中点,AE平分∠BAD,求证:BE平分∠ABC
8个回答
GamryRaman
2023-06-12 广告
2023-06-12 广告
N沟道耗尽型MOS管工作在恒流区时,g极与d极之间的电位有固定的大小关系。这是因为当MOS管工作在恒流区时,由于源极和漏极电压相等,G极电压(即源极电压)为0,而D极电压(即漏极电压)受栅极电压控制。由于G极电压为0,因此在恒流区时,D极电...
点击进入详情页
本回答由GamryRaman提供
展开全部
E是DC的中点。
过E作EF‖AD,
∵AE是∠BAD的平分线,
∴∠DAE=∠BAE,
又∠DAE=∠AEF,
∴∠BAE=∠AEF,
∴AF=EF。
∵E是DC的中点,
∴F也是AB的中的(EF是梯形ABCD的中位线)
∴BF=EF,
∴∠FEB=∠EBC,
∠FEB=∠FBE,
∴∠EBC=∠FBE,
∴BE是∠ABC的平分线。
过E作EF‖AD,
∵AE是∠BAD的平分线,
∴∠DAE=∠BAE,
又∠DAE=∠AEF,
∴∠BAE=∠AEF,
∴AF=EF。
∵E是DC的中点,
∴F也是AB的中的(EF是梯形ABCD的中位线)
∴BF=EF,
∴∠FEB=∠EBC,
∠FEB=∠FBE,
∴∠EBC=∠FBE,
∴BE是∠ABC的平分线。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
取AB的中点F,连接EF
AE平分∠BAD
则∠DAE=∠EAB
E,F分别是CD,AB的中点
∴AD//EF//BC
∴∠DAE=∠AEF
∴∠BAE=∠FEA
∴AF=FE
∵F是AB的中点
∴BF = FE
∴∠FEB=∠FBE
∴EF//BC
∴∠FEB = ∠EBC
∴∠EBC=∠FBE
∴BE平分∠ABC
AE平分∠BAD
则∠DAE=∠EAB
E,F分别是CD,AB的中点
∴AD//EF//BC
∴∠DAE=∠AEF
∴∠BAE=∠FEA
∴AF=FE
∵F是AB的中点
∴BF = FE
∴∠FEB=∠FBE
∴EF//BC
∴∠FEB = ∠EBC
∴∠EBC=∠FBE
∴BE平分∠ABC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:延长AE交BC延长线于M
因为AD//BC
所以 角DAE = 角M
因为 角AED = 角CEM,CE = DE
所以 三角形DAE 全等于 三角形CME
所以
ME = AE
因为 角DAE = 角BAE
所以 角M = 角BAE
所以 BA = BM
所以 BAM是等腰三角形,BE是底边中线
证,BE是顶角的角平分线
因为AD//BC
所以 角DAE = 角M
因为 角AED = 角CEM,CE = DE
所以 三角形DAE 全等于 三角形CME
所以
ME = AE
因为 角DAE = 角BAE
所以 角M = 角BAE
所以 BA = BM
所以 BAM是等腰三角形,BE是底边中线
证,BE是顶角的角平分线
参考资料: WILLBRA
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:延长AE交BC延长线于M
因为AD//BC
所以 角DAE = 角M
因为 角AED = 角CEM,CE = DE
所以 三角形DAE 全等于 三角形CME
所以
ME = AE
因为 角DAE = 角BAE
所以 角M = 角BAE
所以 BA = BM
所以 BAM是等腰三角形,BE是底边中线
容易证,BE是顶角的角平分线
因为AD//BC
所以 角DAE = 角M
因为 角AED = 角CEM,CE = DE
所以 三角形DAE 全等于 三角形CME
所以
ME = AE
因为 角DAE = 角BAE
所以 角M = 角BAE
所以 BA = BM
所以 BAM是等腰三角形,BE是底边中线
容易证,BE是顶角的角平分线
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询