一道高一数学立体几何题。
O是正方体ABCD-A1B1C1D1上底面ABCD的中心,M是正方体对角线AC1和截面A1BD的交点,求证:O,A1,M共线。...
O是正方体ABCD-A1B1C1D1上底面ABCD的中心,M是正方体对角线AC1和截面A1BD的交点,求证:O,A1,M共线。
展开
2个回答
展开全部
分析可以知道EF肯定与CD平行 如果不是平行的那么肯定存在两个EF值使的周长最小 不过那是不可能的 是的周长最小的EF肯定只有一个
解 设AE=X
cosBAE=(2a)^2+(2a)^2-a^2/2*2a*2a=3/8
BE^2 =2AB*AEcosBAE+AB^2+AE^2=4a^2+x^2+3ax/2 =BF
EF^2=2AE*AFcosBAE+AE^2+AF^2=11X^2/4
周长是2(4a^2+x^2+3ax/2)+11X^2/4 =19x^2/4+3ax+8a^2
对称轴是x=6a/19
当x=6a/19 时周长最小 可以计算出结果
在等腰三角形中可以计算出面积了
解 设AE=X
cosBAE=(2a)^2+(2a)^2-a^2/2*2a*2a=3/8
BE^2 =2AB*AEcosBAE+AB^2+AE^2=4a^2+x^2+3ax/2 =BF
EF^2=2AE*AFcosBAE+AE^2+AF^2=11X^2/4
周长是2(4a^2+x^2+3ax/2)+11X^2/4 =19x^2/4+3ax+8a^2
对称轴是x=6a/19
当x=6a/19 时周长最小 可以计算出结果
在等腰三角形中可以计算出面积了
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
2010-11-12
展开全部
连接AC,A1C1,OA1是平面ACC1A1与平面A1BD的交线
点M同时属于上二平面,由公理可知:
M在OA1上,则
O,A1,M共线
点M同时属于上二平面,由公理可知:
M在OA1上,则
O,A1,M共线
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询