
已知关于x的方程x的2次方+(4K+1)X+2K-1=O,求证,次方程一定有两个不相等的实数根,若x1,x2是方程的两个实
展开全部
证明:方程一定有两个不相等的实数根,则b^2-4ac>0,即可。
(4k+1)^2-4*1*(2k-1)
=16k^2+8k+1-8k+4
=16k^2+5大于等于5恒成立。
故,方程一定有两个不相等的实数根。
(4k+1)^2-4*1*(2k-1)
=16k^2+8k+1-8k+4
=16k^2+5大于等于5恒成立。
故,方程一定有两个不相等的实数根。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询