在等腰梯形ABCD中,AD//BC,M、N分别是AD、BC的中点,E、F分别是BM、CM的中点 (1)求四边形MENF是菱形
(2)若四边形MENF是正方形,请探索等腰梯形ABCD的高和底边BC的数量关系,并证明你的结论....
(2)若四边形MENF是正方形,请探索等腰梯形ABCD的高和底边BC的数量关系,并证明你的结论.
展开
展开全部
(1)证明:∵F、N分别为CM、BC中点,
∴FN‖BM,FN=1/2BM=ME
∴MENF是平行四边形
又∵ABCD是等腰梯形,M为BC中点
∴MB=MC
∴ME=MF
∴MENF为菱形
(2)设MB为a,高为h,则:
BC=根号2a
S△MBC=1/2MC*MB=1/2BC*h
即1/2a²=1/2*根号2a*h
∴a=根号2*h
∴FN‖BM,FN=1/2BM=ME
∴MENF是平行四边形
又∵ABCD是等腰梯形,M为BC中点
∴MB=MC
∴ME=MF
∴MENF为菱形
(2)设MB为a,高为h,则:
BC=根号2a
S△MBC=1/2MC*MB=1/2BC*h
即1/2a²=1/2*根号2a*h
∴a=根号2*h
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
EF交WN于O,OF=OE,,E、F分别是三角形BMN和三角形CMN中BM和CM的中点,O就是MN的中点,所以,OM=ON,所以四边形MENF是菱形(两条对角线垂直平分)
等腰梯形ABCD的高和底边BC的数量关系
2MN大于BC大于MN
等腰梯形ABCD的高和底边BC的数量关系
2MN大于BC大于MN
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询