设Sn=1²+2²+3²+``````+n² 则Sn=??

宇文仙
2010-11-13 · 知道合伙人教育行家
宇文仙
知道合伙人教育行家
采纳数:20989 获赞数:115024
一个数学爱好者。

向TA提问 私信TA
展开全部
公式:1^2+2^2+3^2+....+n^2=n(n+1)(2n+1)/6

证明:
给个算术的差量法求解:

我们知道 (m+1)^3 - m^3 = 3*m^2 + 3*m + 1,可以得到下列等式:

2^3 - 1^3 = 3*1^2 + 3*1 + 1
3^3 - 2^3 = 3*2^2 + 3*2 + 1
4^3 - 3^3 = 3*3^2 + 3*3 + 1
.........
(n+1)^3 - n^3 = 3.n^2 + 3*n + 1

以上式子相加得到
(n+1)^3 - 1 = 3*Sn + 3*n(n+1)/2 + n
其中Sn = 1^2 + 2^2 + 3^2 + ...... + n^2
化简整理得到:
Sn = n*(n + 1)*(2n + 1)/6
观音观音观古今3175
2010-11-13 · TA获得超过642个赞
知道答主
回答量:198
采纳率:0%
帮助的人:138万
展开全部
Sn=n(n+1)(2n+1)/6
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
苔锡环9979
2010-11-13 · TA获得超过5204个赞
知道小有建树答主
回答量:672
采纳率:100%
帮助的人:351万
展开全部
已知n^3-(n-1)^3=3n^2-3n+1
(n-1)^3-(n-2)^3=3(n-1)^2-3(n-1)+1
(n-2)^3-(n-3)^3=3(n-2)^2-3(n-2)+1
…………
3^3-2^3=3*3^2-3*3+1
2^3-1^3=3*2^2-3*2+1
1^3-0^3=3*1^2-3*1+1

等式左边相加等于等式右边相加,即:
n^3=3*(1^2+2^2+3^2+……+n^2)-3(1+2+3+……+n)+1*n
设1^2+2^2+3^2+……+n^2=A,又1+2+3+……+n=n*(n+1)/2代入上式,
得n^3=3A-3n*(n+1)/2+n
化简上面式子,得A=n(n+1)(2n+1)/6,即:

1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6.

由此可以得出1^3+2^3+3^3+……+n^3的前n项和公式,
也能推出1^4+2^4+3^4+……+n^4的公式,
当然也就推出了1^x+2^x+3^x+……+n^x(x∈Z)的通式。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式