设Sn=1²+2²+3²+``````+n² 则Sn=??
展开全部
公式:1^2+2^2+3^2+....+n^2=n(n+1)(2n+1)/6
证明:
给个算术的差量法求解:
我们知道 (m+1)^3 - m^3 = 3*m^2 + 3*m + 1,可以得到下列等式:
2^3 - 1^3 = 3*1^2 + 3*1 + 1
3^3 - 2^3 = 3*2^2 + 3*2 + 1
4^3 - 3^3 = 3*3^2 + 3*3 + 1
.........
(n+1)^3 - n^3 = 3.n^2 + 3*n + 1
以上式子相加得到
(n+1)^3 - 1 = 3*Sn + 3*n(n+1)/2 + n
其中Sn = 1^2 + 2^2 + 3^2 + ...... + n^2
化简整理得到:
Sn = n*(n + 1)*(2n + 1)/6
证明:
给个算术的差量法求解:
我们知道 (m+1)^3 - m^3 = 3*m^2 + 3*m + 1,可以得到下列等式:
2^3 - 1^3 = 3*1^2 + 3*1 + 1
3^3 - 2^3 = 3*2^2 + 3*2 + 1
4^3 - 3^3 = 3*3^2 + 3*3 + 1
.........
(n+1)^3 - n^3 = 3.n^2 + 3*n + 1
以上式子相加得到
(n+1)^3 - 1 = 3*Sn + 3*n(n+1)/2 + n
其中Sn = 1^2 + 2^2 + 3^2 + ...... + n^2
化简整理得到:
Sn = n*(n + 1)*(2n + 1)/6
展开全部
Sn=n(n+1)(2n+1)/6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已知n^3-(n-1)^3=3n^2-3n+1
(n-1)^3-(n-2)^3=3(n-1)^2-3(n-1)+1
(n-2)^3-(n-3)^3=3(n-2)^2-3(n-2)+1
…………
3^3-2^3=3*3^2-3*3+1
2^3-1^3=3*2^2-3*2+1
1^3-0^3=3*1^2-3*1+1
等式左边相加等于等式右边相加,即:
n^3=3*(1^2+2^2+3^2+……+n^2)-3(1+2+3+……+n)+1*n
设1^2+2^2+3^2+……+n^2=A,又1+2+3+……+n=n*(n+1)/2代入上式,
得n^3=3A-3n*(n+1)/2+n
化简上面式子,得A=n(n+1)(2n+1)/6,即:
1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6.
由此可以得出1^3+2^3+3^3+……+n^3的前n项和公式,
也能推出1^4+2^4+3^4+……+n^4的公式,
当然也就推出了1^x+2^x+3^x+……+n^x(x∈Z)的通式。
(n-1)^3-(n-2)^3=3(n-1)^2-3(n-1)+1
(n-2)^3-(n-3)^3=3(n-2)^2-3(n-2)+1
…………
3^3-2^3=3*3^2-3*3+1
2^3-1^3=3*2^2-3*2+1
1^3-0^3=3*1^2-3*1+1
等式左边相加等于等式右边相加,即:
n^3=3*(1^2+2^2+3^2+……+n^2)-3(1+2+3+……+n)+1*n
设1^2+2^2+3^2+……+n^2=A,又1+2+3+……+n=n*(n+1)/2代入上式,
得n^3=3A-3n*(n+1)/2+n
化简上面式子,得A=n(n+1)(2n+1)/6,即:
1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6.
由此可以得出1^3+2^3+3^3+……+n^3的前n项和公式,
也能推出1^4+2^4+3^4+……+n^4的公式,
当然也就推出了1^x+2^x+3^x+……+n^x(x∈Z)的通式。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询