
如图,在平行四边形ABCD中,E,F分别是BC,AD的中点
3个回答
展开全部
证明:
∵四边形ABCD是平行四边形
∴AD=BC, AD//BC
∵E,F分别是BC,AD的中点
∴AF=BE=FD=EC
在△AGF与△EGB中
∠GAF=∠GEB,∠GFA=∠GBE,AF=BE=1/2AD
∴△AGF≌△EGB
∴AG=EG
同理可得△DHF≌△CHB
∴CH=FH
∴GH为△AED的中位线
∴GH‖AD,且GH=1/2AD
∵四边形ABCD是平行四边形
∴AD=BC, AD//BC
∵E,F分别是BC,AD的中点
∴AF=BE=FD=EC
在△AGF与△EGB中
∠GAF=∠GEB,∠GFA=∠GBE,AF=BE=1/2AD
∴△AGF≌△EGB
∴AG=EG
同理可得△DHF≌△CHB
∴CH=FH
∴GH为△AED的中位线
∴GH‖AD,且GH=1/2AD
来自:求助得到的回答

2023-06-12 广告
N沟道耗尽型MOS管工作在恒流区时,g极与d极之间的电位有固定的大小关系。这是因为当MOS管工作在恒流区时,由于源极和漏极电压相等,G极电压(即源极电压)为0,而D极电压(即漏极电压)受栅极电压控制。由于G极电压为0,因此在恒流区时,D极电...
点击进入详情页
本回答由GamryRaman提供
展开全部
连接EF,因为AF平行且等于BE,DF平行且等于CE。所以得到两个平行四边形DFEB,ACEF
以G、H分别是平行四边形DFEB,ACEF
的对角线交点。
所以G是AE中点,H是CF中点,所以GH是三角形AED的中位线,所以GH平行且等于AD的一半。
以G、H分别是平行四边形DFEB,ACEF
的对角线交点。
所以G是AE中点,H是CF中点,所以GH是三角形AED的中位线,所以GH平行且等于AD的一半。

你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询