
已知锐角三角形ABC的三个内角A,B,C的对边分别为a,b,c,且a+b/cosA+cosB=c/cosC(1)求证:角A,B,C成等差数 15
展开全部
由CosC=(a^2+b^2-c^2)/2ab CosB=(a^2+c^2-b^2)/2ac CosA=(c^2+b^2-a^2)/2bc
将a+b/cosA+cosB=c/cosC 中的cos项都用余弦定理中a,b,c替换,化简得 c^2=a^2+b^2-ab,再结合c^2=a^2+b^2-2*a*b*CosC 可知2cosC=1,在锐角三角形中,C∈(0,π/2),所以C=π/3,所以A+B=π-π/3=2π/3,即A+B=2C,所以角A,B,C成等差数列
将a+b/cosA+cosB=c/cosC 中的cos项都用余弦定理中a,b,c替换,化简得 c^2=a^2+b^2-ab,再结合c^2=a^2+b^2-2*a*b*CosC 可知2cosC=1,在锐角三角形中,C∈(0,π/2),所以C=π/3,所以A+B=π-π/3=2π/3,即A+B=2C,所以角A,B,C成等差数列
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询