f(x)=(x-1)(x-2)(x-3)(x-4).问方程f`(x)=0有几个实根,并指出它们所在区间。
2个回答
展开全部
不用求导方法做:
(x-1)(x-2)(x-3)(x-4)
= [(x - 1)(x - 4)]*[(x - 2)(x - 3)]
= (x^2 - 5x + 4)*(x^2 - 5x + 6)
= (x^2 - 5x + 5)^2 - 1
令 u = x^2 - 5x + 5 则有
f(x) = u^2 - 1
f'(x) = 0 的实数根肯定在 f(u) 的顶点处,有:
u = 0
x^2 - 5x + 5 = 0
x1 = (5 + √5)/2
x2 = (5 - √5)/2
(x-1)(x-2)(x-3)(x-4)
= [(x - 1)(x - 4)]*[(x - 2)(x - 3)]
= (x^2 - 5x + 4)*(x^2 - 5x + 6)
= (x^2 - 5x + 5)^2 - 1
令 u = x^2 - 5x + 5 则有
f(x) = u^2 - 1
f'(x) = 0 的实数根肯定在 f(u) 的顶点处,有:
u = 0
x^2 - 5x + 5 = 0
x1 = (5 + √5)/2
x2 = (5 - √5)/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询