【急】图中是一副三角板,45°的三角板Rt△DEF的直角顶点D恰好在30°的三角板Rt△ABC斜边AB的中点处。
∠A=30°,∠E=45°,∠EDF=∠ACB=90°,DE交AC于点G,GM⊥AB于M。(1)如图①,当DF经过点C时,作CN⊥AB于N,求证:AM=DN(2)如图②,...
∠A=30°,∠E=45°,∠EDF=∠ACB=90°,DE交AC于点G,GM⊥AB于M。
(1)如图①,当DF经过点C时,作CN⊥AB于N,求证:AM=DN
(2)如图②,当DF‖AC时,DF交BC于H,作HN⊥AB于N,(1)的结论仍然成立,请你说明理由。 展开
(1)如图①,当DF经过点C时,作CN⊥AB于N,求证:AM=DN
(2)如图②,当DF‖AC时,DF交BC于H,作HN⊥AB于N,(1)的结论仍然成立,请你说明理由。 展开
展开全部
(1)Rt△ABC中,∠A=30°,BC=1/2AB,又D为AB中点,所以AD=BD=BC .
所以∠CDB=60°,△BCD是正△。又CN⊥AB,所以DN=BN=1/2BD ①。
又∠EDF=90°,∠CDB=60°所以∠EDA=30°=∠A,AG=DG,又GM⊥AD,所以AM=DM=1/2AD ②。
由①②,AM=DN
(2)因为DF‖AC所以△DHB和△AGD为Rt△,∠A=∠HDB=30°,AD=BD
所以Rt△ADG全等于Rt△BDH ,GM=HN(全等Rt△斜边上的高相等)
所以Rt△AMG全等于Rt△DNH
所以AM=DN
所以∠CDB=60°,△BCD是正△。又CN⊥AB,所以DN=BN=1/2BD ①。
又∠EDF=90°,∠CDB=60°所以∠EDA=30°=∠A,AG=DG,又GM⊥AD,所以AM=DM=1/2AD ②。
由①②,AM=DN
(2)因为DF‖AC所以△DHB和△AGD为Rt△,∠A=∠HDB=30°,AD=BD
所以Rt△ADG全等于Rt△BDH ,GM=HN(全等Rt△斜边上的高相等)
所以Rt△AMG全等于Rt△DNH
所以AM=DN
展开全部
(1)证明:∵∠A=30°,∠ACB=90°,D是AB的中点.
∴CD=AD=BD,
又∠B=90°-∠A=60°,
∴△BCD是等边三角形.
又∵CN⊥DB,
∴DN=1/2DB.
∵∠EDF=90°,△BCD是等边三角形,
∴∠ADG=30°,而∠A=30°.
∴GA=GD.
∵GM⊥AB,
∴AM=1/2AD.
又∵AD=DB,
∴AM=DN.
(2)解:(1)的结论依然成立.理由如下:
∵DF∥AC,
∴∠1=∠A=30°,∠AGD=∠GDH=90°,
∴∠ADG=60°.
∵∠B=60°,AD=DB,
∴△ADG≌△DBH,
∴AG=DH.
又∵∠1=∠A,GM⊥AB,HN⊥AB,
∴△AMG≌△DNH,
∴AM=DN.
顶下啦,评论也行
∴CD=AD=BD,
又∠B=90°-∠A=60°,
∴△BCD是等边三角形.
又∵CN⊥DB,
∴DN=1/2DB.
∵∠EDF=90°,△BCD是等边三角形,
∴∠ADG=30°,而∠A=30°.
∴GA=GD.
∵GM⊥AB,
∴AM=1/2AD.
又∵AD=DB,
∴AM=DN.
(2)解:(1)的结论依然成立.理由如下:
∵DF∥AC,
∴∠1=∠A=30°,∠AGD=∠GDH=90°,
∴∠ADG=60°.
∵∠B=60°,AD=DB,
∴△ADG≌△DBH,
∴AG=DH.
又∵∠1=∠A,GM⊥AB,HN⊥AB,
∴△AMG≌△DNH,
∴AM=DN.
顶下啦,评论也行
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询