已知集合A={x| |x-a|=4},集合B={1,2,b}.
(1)是否存在实数a,使得对于任意实数b都有A包含于B?若存在,求出a=?,若不存在,说明理由。(2)若A包含于B成立,求出对应的实数(a,b)....
(1)是否存在实数a,使得对于任意实数b都有A包含于B?若存在,求出a=?,若不存在,说明理由。
(2)若A包含于B成立,求出对应的实数(a,b). 展开
(2)若A包含于B成立,求出对应的实数(a,b). 展开
1个回答
展开全部
A={x| |x-a|=4}
={ a+4 , a-4 }
B={1,2,b}
if B is subset of A, for all b
then
case 1
a+4 =1 and a-4 =2
a = -3 and a = 6 (rejected)
or
case 2
a+4 = 2 and a-4 = 1
a = -2 and a = 5 ( rejected )
不局数存在a, 对于任意实简腊改数b都有A包拦判含于B
if A is subset of B, then
case 1
a+4 =1 and a-4=b
=> a= -3 and b = -7
or
case 2
a+4=2 and a-4=b
=>a = -2 and b= -6
or
case 3
a-4= 1 and a+4 =b
=>a = 5 and b = 9
or
case 4
a-4 = 2 and a+4 =b
=> a =6 and b=10
(a,b) = (-3,-7) or (-2,-6) or (5,9) or (6,10) #
={ a+4 , a-4 }
B={1,2,b}
if B is subset of A, for all b
then
case 1
a+4 =1 and a-4 =2
a = -3 and a = 6 (rejected)
or
case 2
a+4 = 2 and a-4 = 1
a = -2 and a = 5 ( rejected )
不局数存在a, 对于任意实简腊改数b都有A包拦判含于B
if A is subset of B, then
case 1
a+4 =1 and a-4=b
=> a= -3 and b = -7
or
case 2
a+4=2 and a-4=b
=>a = -2 and b= -6
or
case 3
a-4= 1 and a+4 =b
=>a = 5 and b = 9
or
case 4
a-4 = 2 and a+4 =b
=> a =6 and b=10
(a,b) = (-3,-7) or (-2,-6) or (5,9) or (6,10) #
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询