3个回答
展开全部
为了叙述方便,我自己拟了一个题......
已知:三角形ABC中,DE‖BC交AB于D、交AC于E,求证:△ADE∽△ABC
证明:
过C作CF‖AB交DE延长线于F
∵CF‖AB,DE‖BC
∴四边形DBCF是平行四边形
∴DF=BC,BD=CF
∵CF‖AB
∴∠ACF=∠A
∵∠AED=∠CEF
∴△AED∽△CEF
∴AE/CE=DE/EF=AD/CF
∵BD=CF (已证)
∴AE/CE=DE/EF=AD/BD
∴AE/(AE+CE)=DE/(DE+EF)=AD/(AD+BD)
∵AE+CE=AC DE+EF=DF AD+BD=AB
∴AE/AC=DE/DF=AD/AB
∵DF=BC
∴AE/AC=DE/BC=AD/AB
∵DE‖BC
∴∠ADE=∠B ∠AED=∠ACB
∵∠A=∠A AE/AC=DE/BC=AD/AB
∴△ADE∽△ABC 只能这么证!
已知:三角形ABC中,DE‖BC交AB于D、交AC于E,求证:△ADE∽△ABC
证明:
过C作CF‖AB交DE延长线于F
∵CF‖AB,DE‖BC
∴四边形DBCF是平行四边形
∴DF=BC,BD=CF
∵CF‖AB
∴∠ACF=∠A
∵∠AED=∠CEF
∴△AED∽△CEF
∴AE/CE=DE/EF=AD/CF
∵BD=CF (已证)
∴AE/CE=DE/EF=AD/BD
∴AE/(AE+CE)=DE/(DE+EF)=AD/(AD+BD)
∵AE+CE=AC DE+EF=DF AD+BD=AB
∴AE/AC=DE/DF=AD/AB
∵DF=BC
∴AE/AC=DE/BC=AD/AB
∵DE‖BC
∴∠ADE=∠B ∠AED=∠ACB
∵∠A=∠A AE/AC=DE/BC=AD/AB
∴△ADE∽△ABC 只能这么证!
展开全部
设△ABC ,做DE‖BC分别交AB于D交AC于E
因为DE‖BC
所以∠ADE=∠ABC,∠AED=∠ACB
而两个三角形还有公共角∠BAC
三个角都相等
角角角关系
所以两个三角形相似
因为DE‖BC
所以∠ADE=∠ABC,∠AED=∠ACB
而两个三角形还有公共角∠BAC
三个角都相等
角角角关系
所以两个三角形相似
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
对顶角相等
此平行线与平行的那条边所夹的 两对内侧角分别相等,
角角角关系,所以相似
此平行线与平行的那条边所夹的 两对内侧角分别相等,
角角角关系,所以相似
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询