
已知A(-1,0),B(2,0),动点M满足2∠MAB=∠MBA,求点M的轨迹方程
2010-11-14
展开全部
设M(x,y),有:-1<x<2
tan∠MBA=y/(2-x)
tan∠MAB=Y/(X+1)
∠MBA=2∠MAB
所以:
tan∠MBA=2tan∠MAB/(1-tan^2∠MAB)
带入整理;
3x^2-y^2=3
动点M的轨迹方程
x^2-y^2/3=1,
参考:(把P换成M)
∠PBA=2∠PAB
P(x,y)
k(PB)=y/(x-2)
k(PA)=y/(x+1)
过B作BC平分∠PBA,交PA于C ,则∠CBA=∠CBP=∠PAB
k(BC)=-k(PA)=-y/(x+1)
∠CBA=∠CBP
{y/(x-2)-[-y/(x+1)}/{1+[y/(x-2)]*[-y/(x+1)]}=-y/(x+1)
3x^2-y^2=3
点P的轨迹:x^2-y^2/3=1
tan∠MBA=y/(2-x)
tan∠MAB=Y/(X+1)
∠MBA=2∠MAB
所以:
tan∠MBA=2tan∠MAB/(1-tan^2∠MAB)
带入整理;
3x^2-y^2=3
动点M的轨迹方程
x^2-y^2/3=1,
参考:(把P换成M)
∠PBA=2∠PAB
P(x,y)
k(PB)=y/(x-2)
k(PA)=y/(x+1)
过B作BC平分∠PBA,交PA于C ,则∠CBA=∠CBP=∠PAB
k(BC)=-k(PA)=-y/(x+1)
∠CBA=∠CBP
{y/(x-2)-[-y/(x+1)}/{1+[y/(x-2)]*[-y/(x+1)]}=-y/(x+1)
3x^2-y^2=3
点P的轨迹:x^2-y^2/3=1

2023-08-01 广告
计算过程如下:首先,计算4个数值的和:∑Xs = 0.3 + 0.2 + 0.4 + 0.1 = 1然后,计算 lg-1(∑Xs/4):lg-1(∑Xs/4) = lg-1(1/4) = -1其中,lg表示以10为底的对数,即 log10。...
点击进入详情页
本回答由厦门鲎试剂生物科技股份有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询