2个回答
展开全部
前提a+b+c=1
先证明均值不等式:因为(a-b)^2≥0
即a^2-2ab+b^2≥0
所以2ab≤a^2+b^2
下面开始证明:
a+b+c=1 两边平方
a^2+b^2+c^2+2ab+2bc+2ac=1
因为
a^2+b^2+c^2+2ab+2bc+2ac≤a^2+b^2+c^2+(a^2+b^2)+(b^2+c^2)+(a^2+c^2)
这一步是根据上面的均值不等式。
右边=3(a^2+b^2+c^2)
左边=1
所以1≤3(a^2+b^2+c^2)
也就是a²+b²+c²>=1/3
先证明均值不等式:因为(a-b)^2≥0
即a^2-2ab+b^2≥0
所以2ab≤a^2+b^2
下面开始证明:
a+b+c=1 两边平方
a^2+b^2+c^2+2ab+2bc+2ac=1
因为
a^2+b^2+c^2+2ab+2bc+2ac≤a^2+b^2+c^2+(a^2+b^2)+(b^2+c^2)+(a^2+c^2)
这一步是根据上面的均值不等式。
右边=3(a^2+b^2+c^2)
左边=1
所以1≤3(a^2+b^2+c^2)
也就是a²+b²+c²>=1/3
参考资料: http://zhidao.baidu.com/question/191153022.html?push=ql
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询