微分的本质几何意义是什么
4个回答
展开全部
几何意义:设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲 线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。
拓展资料:
1、微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。微分是函数改变量的线性主要部分。微积分的基本概念之一。
2、一元型:设函数y = f(x)在x的邻域内有定义,x及x + Δx在此区间内。如果函数的增量Δy = f(x + Δx) - f(x)可表示为 Δy = AΔx + o(Δx)(其中A是不依赖于Δx的常数),而o(Δx)是比Δx高阶的无穷小(注:o读作奥密克戎,希腊字母)那么称函数f(x)在点x是可微的,且AΔx称作函数在点x相应于因变量增量Δy的微分,记作dy,即dy = AΔx。
展开全部
微分:dy=f'(x)*dx,微分就是该函数的导数乘以dx,微分的几何意义就是:直角三角形的高〔dy〕等于正切值〔斜率、导数即f'(x)〕乘以该三角形的底边〔dx〕。把这些微分即微小的dy累积起来不就得到三角形的高或着说得到了函数值的本身即y=f(x)吗?积分是把各个面积为f(x)*dx〔注意不是f'(x)哦〕的小片〔微小的长方形〕的微小面积全部累积起来,这样是不是就得到了函数曲线与x轴所围成的面积呢?
参考资料: http://zhidao.baidu.com/question/197785973.html?push=cookie
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
引用霍去病919的回答:
微分:dy=f'(x)*dx,微分就是该函数的导数乘以dx,微分的几何意义就是:直角三角形的高〔dy〕等于正切值〔斜率、导数即f'(x)〕乘以该三角形的底边〔dx〕。把这些微分即微小的dy累积起来不就得到三角形的高或着说得到了函数值的本身即y=f(x)吗?积分是把各个面积为f(x)*dx〔注意不是f'(x)哦〕的小片〔微小的长方形〕的微小面积全部累积起来,这样是不是就得到了函数曲线与x轴所围成的面积呢?
微分:dy=f'(x)*dx,微分就是该函数的导数乘以dx,微分的几何意义就是:直角三角形的高〔dy〕等于正切值〔斜率、导数即f'(x)〕乘以该三角形的底边〔dx〕。把这些微分即微小的dy累积起来不就得到三角形的高或着说得到了函数值的本身即y=f(x)吗?积分是把各个面积为f(x)*dx〔注意不是f'(x)哦〕的小片〔微小的长方形〕的微小面积全部累积起来,这样是不是就得到了函数曲线与x轴所围成的面积呢?
展开全部
前面说的还挺对的 后面咋有点模棱两可了 你画条曲线 从x0处画它的切线,与x0+Δx这条线的交点,dy就是交点到f(x0)的距离,小于Δy,无限分割时,dy近似等于Δy
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询