在△ABC中,点O是边AC上一个动点,过O作直线MN平行BC设MN交∠BCA的平分线于点E.交∠BCA的外角平分线与点F

1.探究:线段OE与OF的数量关系并说明理由2.当点O在边AC上运动时,四边形BCFE会是菱形吗?不必说理由3.当点O运动到何处,且△ABC满足什么条件时,四边形AECF... 1.探究:线段OE与OF的数量关系并说明理由
2.当点O在边AC上运动时,四边形BCFE会是菱形吗?不必说理由
3.当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形是说明理由
展开
suju甜
2010-11-15 · TA获得超过194个赞
知道答主
回答量:24
采纳率:0%
帮助的人:9.7万
展开全部
1. OE=OF
理由如下:∵OE是∠ACB的平分线
∴∠ACE=∠ECB
又∵MN//BC
∴∠OEC=∠ECB
∴∠ACE=∠OEC
∴OE=OC
同理可证得OF=OC
∴OE=OF
2.当点O在边AC上运动时,四边形BCFE会是菱形
3.当点O运动到AC的中点,且△ABC的∠ACB=90°时,四边形AECF是正方形
理由如下:∵OE=OF O是AC的中点
∴OA=OC
∴四边形AECF是平行四边形
又∵CF,CE是一对邻角的角平分线
∴∠ECF=90°
∴四边形AECF是矩形
又∵∠ACB=90° MN//BC
∴∠AOM=90°
∴四边形AECF是正方形
把人打字打得辛苦的,你是初三的吧,嘻嘻,我也是
only先生ok
2012-09-12
知道答主
回答量:31
采纳率:0%
帮助的人:4.6万
展开全部
1 证明:∵MN//BC
∴∠OEC=∠BCE
∴∠OFC=∠FCG
∵∠BCE=∠OCE(OE是∠BCA的内角平分线)
∴∠OEC=∠OCE
∴OE=OC
∵∠OCF=∠FCG(OF是∠BCA的外角平分线)
∴∠OCF=∠OFC
∴OF=OC
∴OE=OF
2 O运动到AC边中点时,四边形AECF是矩形.
证明:∵ OE=OC
OE=OF
当O为AC中点时 OA=OC
∴OE=OC=OF=OA
∴四边形AECF是矩形
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式