高二 曲线与方程
1、过点P(3,4)的动直线与两坐标轴的焦点分别为A,B,过A,B分别作两轴的垂线交于点M,求点M的轨迹方程。2、一动圆截直线3x-y=0和3x+y=0所得弦长分别为8,...
1、过点P(3,4)的动直线与两坐标轴的焦点分别为A,B,过A,B分别作两轴的垂线交于点M,求点M的轨迹方程。
2、一动圆截直线3x-y=0和3x+y=0所得弦长分别为8,4,求动圆圆心的轨迹方程。 展开
2、一动圆截直线3x-y=0和3x+y=0所得弦长分别为8,4,求动圆圆心的轨迹方程。 展开
1个回答
展开全部
1、设M(x,y),A在x轴上,B在y轴上
则A(x,0) B(0,y) (x,y≠0)(若为0则A,B重合)
由 AP的斜率=BP的斜率 得
4/(3-x)=(4-y)/3
整理得M的轨迹方程为 xy-4x-3y=0(x≠0)
2、设圆心为A(x,y)
A到直线3x-y=0的距离m=|3x-y|/√10
到直线3x+y=0的距离n=|3x+y|/√10
由几何关系可得m^2 +(8/2)^2 =n^2 +(4/2)^2
将m,n代入整理得圆心的轨迹方程为 xy=10
则A(x,0) B(0,y) (x,y≠0)(若为0则A,B重合)
由 AP的斜率=BP的斜率 得
4/(3-x)=(4-y)/3
整理得M的轨迹方程为 xy-4x-3y=0(x≠0)
2、设圆心为A(x,y)
A到直线3x-y=0的距离m=|3x-y|/√10
到直线3x+y=0的距离n=|3x+y|/√10
由几何关系可得m^2 +(8/2)^2 =n^2 +(4/2)^2
将m,n代入整理得圆心的轨迹方程为 xy=10
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询