4个回答
展开全部
t>0时
e^t = 1+t +t^2 /2 + t^3 /6 +... >t^3 /6
e^t /t^2 > t/6
对于给定的任意大的正数M , 存在 t1 =6M , 当 t>t1时 有 e^t /t^2 > t/6>t1/6 =M
所以 e的t次方 / t的平方 在t趋向正无穷时的极限为正无穷大
e^t = 1+t +t^2 /2 + t^3 /6 +... >t^3 /6
e^t /t^2 > t/6
对于给定的任意大的正数M , 存在 t1 =6M , 当 t>t1时 有 e^t /t^2 > t/6>t1/6 =M
所以 e的t次方 / t的平方 在t趋向正无穷时的极限为正无穷大
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
必须是无穷大
lim x->无穷 e^t/t^2=limx->无穷 e^t/2t=limx->无穷 e^t/2=无穷 (罗比达法则)
另外你可以作图,你会发现往后的话,幂函数比二次函数增长趋势更陡一些,也可以推测是无穷大
lim x->无穷 e^t/t^2=limx->无穷 e^t/2t=limx->无穷 e^t/2=无穷 (罗比达法则)
另外你可以作图,你会发现往后的话,幂函数比二次函数增长趋势更陡一些,也可以推测是无穷大
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
t趋向于正无穷,则t的二次方分之1趋向于0
整体也就趋向于0
整体也就趋向于0
追问
抱歉。。它的答案是无穷。。
追答
好吧。。。高数都忘了,你试试洛必达法则吧,应该可以求出来的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |