展开全部
需要很多的子函数
%子程序:新物种交叉操作,函数名称存储为crossover.m
function scro=crossover(population,seln,pc);
BitLength=size(population,2);
pcc=IfCroIfMut(pc);%根据交叉概率决定是否进行交叉操作,1则是,0则否
if pcc==1
chb=round(rand*(BitLength-2))+1;%在[1,BitLength-1]范围内随机产生一个交叉位
scro(1,:)=[population(seln(1),1:chb) population(seln(2),chb+1:BitLength)]
scro(2,:)=[population(seln(2),1:chb) population(seln(1),chb+1:BitLength)]
else
scro(1,:)=population(seln(1),:);
scro(2,:)=population(seln(2),:);
end
%子程序:计算适应度函数,函数名称存储为fitnessfun.m
function [Fitvalue,cumsump]=fitnessfun(population);
global BitLength
global boundsbegin
global boundsend
popsize=size(population,1);%有popsize个个体
for i=1:popsize
x=transform2to10(population(i,:));%将二进制转换为十进制
%转化为[-2,2]区间的实数
xx=boundsbegin+x*(boundsend-boundsbegin)/(power(2,BitLength)-1);
Fitvalue(i)=targetfun(xx);%计算函数值,即适应度
end
%给适应度函数加上一个大小合理的数以便保证种群适应度值为正数
Fitvalue=Fitvalue'+203;
%计算选择概率
fsum=sum(Fitvalue);
Pperpopulation=Fitvalue/fsum;
%计算累计概率
cumsump(1)=Pperpopulation(1);
for i=2:popsize
cumsump(i)=cumsump(i-1)+Pperpopulation(i);
end
cumsump=cumsump';
%子程序:判断遗传运算是否需要进行交叉或变异,函数名称存储为IfCroIfMut.m
function pcc=IfCroIfMut(mutORcro);
test(1:100)=0;
l=round(100*mutORcro);
test(1:l)=1;
n=round(rand*99)+1;
pcc=test(n);
%子程序:新种群变异操作,函数名称存储为mutation.m
function snnew=mutation(snew,pmutation);
BitLength=size(snew,2);
snnew=snew;
pmm=IfCroIfMut(pmutation);%根据变异概率决定是否进行变异操作,1则是,0则否
if pmm==1
chb=round(rand*(BitLength-1))+1;%在[1,BitLength]范围内随机产生一个变异位
snnew(chb)=abs(snew(chb)-1);
end
%子程序:新种群选择操作,函数名称存储为selection.m
function seln=selection(population,cumsump);
%从种群中选择两个个体
for i=1:2
r=rand;%产生一个随机数
prand=cumsump-r;
j=1;
while prand(j)<0
j=j+1;
end
seln(i)=j;%选中个体的序号
end
%子程序:对于优化最大值或极大值函数问题,目标函数可以作为适应度函数
%函数名称存储为targetfun.m
function y=targetfun(x);%目标函数
%子程序:将二进制数转换为十进制数,函数名称存储为transform2to10.m
function x=transform2to10(Population);
BitLength=size(Population,2);
x=Population(BitLength);
for i=1:BitLength-1
x=x+Population(BitLength-i)*power(2,i);
end
k=[0 0.1 0.2 0.3 0.5 1];
for i=1:1:5
%主程序:用遗传算法求解targetfun.m中目标函数在区间[-2,2]的最大值
clc;
clear all;
close all;
global BitLength
global boundsbegin
global boundsend
bounds=[-2 2];%一维自变量的取值范围
precision=0.0001;%运算精度
boundsbegin=bounds(:,1);
boundsend=bounds(:,2);
%计算如果满足求解精度至少需要多长的染色体
BitLength=ceil(log2((boundsend-boundsbegin)'./precision));
popsize=50;%初始种群大小
Generationmax=12;%最大代数
pcrossover=0.90;%交配概率
pmutation=0.09;%变异概率
%产生初始种群
population=round(rand(popsize,BitLength));
%计算适应度值,返回Fitvalue和累计概率cumsump
[Fitvalue,cumsump]=fitnessfun(population);
Generation=1;
while Generation<Generationmax+1
for j=1:2:popsize
%选择操作
seln=selection(population,cumsump);
%交叉操作
scro=crossover(population,seln,pcrossover);
scnew(j,:)=scro(1,:);
scnew(j+1,:)=scro(2,:);
%变异操作
smnew(j,:)=mutation(scnew(j,:),pmutation);
smnew(j+1,:)=mutation(scnew(j+1,:),pmutation);
end%产生了新种群
population=smnew;
%计算新种群的适应度
[Fitvalue,cumsump]=fitnessfun(population);
%记录当前代最好的适应度和平均适应度
[fmax,nmax]=max(Fitvalue);
fmean=mean(Fitvalue);
ymax(Generation)=fmax;
ymean(Generation)=fmean;
%记录当前代的最佳染色体个体
x=transform2to10(population(nmax,:));
%自变量取值范围是[-2 2],需要把经过遗传运算的最佳染色体整合到[-2 2]区间
xx=boundsbegin+x*(boundsend-boundsbegin)/(power(2,BitLength)-1);
xmax(Generation)=xx;
Generation=Generation+1;
end
Generation=Generation-1;
Bestpopuation=xx;
Besttargetfunvalue=targetfun(xx);
%绘制经过遗传运算后的适应度曲线。一般地,如果进化过程中种群的平均适应度与最大适
%应度在曲线上有相互趋同的形态,表示算法收敛进行得很顺利,没有出现震荡;在这种前
%提下,最大适应度个体连续若干代都没有发生进化表明种群已经成熟
figure(1);
hand1=plot(1:Generation,ymax);
set(hand1,'linestyle','-','linewidth',1.8,'marker','*','markersize',6)
hold on;
hand2=plot(1:Generation,ymean);
set(hand2,'color','r','linestyle','-','linewidth',1.8,'marker','h','markersize',6)
xlabel('进化代数');ylabel('(最大/平均适应度)');xlim([1 Generationmax]);
legend('最大适应度','平均适应度');
box off;hold off;
y=(x(i)-k(i))^2-10*sin(2*pi*(x(i)-k(i)))+10;
end
%子程序:新物种交叉操作,函数名称存储为crossover.m
function scro=crossover(population,seln,pc);
BitLength=size(population,2);
pcc=IfCroIfMut(pc);%根据交叉概率决定是否进行交叉操作,1则是,0则否
if pcc==1
chb=round(rand*(BitLength-2))+1;%在[1,BitLength-1]范围内随机产生一个交叉位
scro(1,:)=[population(seln(1),1:chb) population(seln(2),chb+1:BitLength)]
scro(2,:)=[population(seln(2),1:chb) population(seln(1),chb+1:BitLength)]
else
scro(1,:)=population(seln(1),:);
scro(2,:)=population(seln(2),:);
end
%子程序:计算适应度函数,函数名称存储为fitnessfun.m
function [Fitvalue,cumsump]=fitnessfun(population);
global BitLength
global boundsbegin
global boundsend
popsize=size(population,1);%有popsize个个体
for i=1:popsize
x=transform2to10(population(i,:));%将二进制转换为十进制
%转化为[-2,2]区间的实数
xx=boundsbegin+x*(boundsend-boundsbegin)/(power(2,BitLength)-1);
Fitvalue(i)=targetfun(xx);%计算函数值,即适应度
end
%给适应度函数加上一个大小合理的数以便保证种群适应度值为正数
Fitvalue=Fitvalue'+203;
%计算选择概率
fsum=sum(Fitvalue);
Pperpopulation=Fitvalue/fsum;
%计算累计概率
cumsump(1)=Pperpopulation(1);
for i=2:popsize
cumsump(i)=cumsump(i-1)+Pperpopulation(i);
end
cumsump=cumsump';
%子程序:判断遗传运算是否需要进行交叉或变异,函数名称存储为IfCroIfMut.m
function pcc=IfCroIfMut(mutORcro);
test(1:100)=0;
l=round(100*mutORcro);
test(1:l)=1;
n=round(rand*99)+1;
pcc=test(n);
%子程序:新种群变异操作,函数名称存储为mutation.m
function snnew=mutation(snew,pmutation);
BitLength=size(snew,2);
snnew=snew;
pmm=IfCroIfMut(pmutation);%根据变异概率决定是否进行变异操作,1则是,0则否
if pmm==1
chb=round(rand*(BitLength-1))+1;%在[1,BitLength]范围内随机产生一个变异位
snnew(chb)=abs(snew(chb)-1);
end
%子程序:新种群选择操作,函数名称存储为selection.m
function seln=selection(population,cumsump);
%从种群中选择两个个体
for i=1:2
r=rand;%产生一个随机数
prand=cumsump-r;
j=1;
while prand(j)<0
j=j+1;
end
seln(i)=j;%选中个体的序号
end
%子程序:对于优化最大值或极大值函数问题,目标函数可以作为适应度函数
%函数名称存储为targetfun.m
function y=targetfun(x);%目标函数
%子程序:将二进制数转换为十进制数,函数名称存储为transform2to10.m
function x=transform2to10(Population);
BitLength=size(Population,2);
x=Population(BitLength);
for i=1:BitLength-1
x=x+Population(BitLength-i)*power(2,i);
end
k=[0 0.1 0.2 0.3 0.5 1];
for i=1:1:5
%主程序:用遗传算法求解targetfun.m中目标函数在区间[-2,2]的最大值
clc;
clear all;
close all;
global BitLength
global boundsbegin
global boundsend
bounds=[-2 2];%一维自变量的取值范围
precision=0.0001;%运算精度
boundsbegin=bounds(:,1);
boundsend=bounds(:,2);
%计算如果满足求解精度至少需要多长的染色体
BitLength=ceil(log2((boundsend-boundsbegin)'./precision));
popsize=50;%初始种群大小
Generationmax=12;%最大代数
pcrossover=0.90;%交配概率
pmutation=0.09;%变异概率
%产生初始种群
population=round(rand(popsize,BitLength));
%计算适应度值,返回Fitvalue和累计概率cumsump
[Fitvalue,cumsump]=fitnessfun(population);
Generation=1;
while Generation<Generationmax+1
for j=1:2:popsize
%选择操作
seln=selection(population,cumsump);
%交叉操作
scro=crossover(population,seln,pcrossover);
scnew(j,:)=scro(1,:);
scnew(j+1,:)=scro(2,:);
%变异操作
smnew(j,:)=mutation(scnew(j,:),pmutation);
smnew(j+1,:)=mutation(scnew(j+1,:),pmutation);
end%产生了新种群
population=smnew;
%计算新种群的适应度
[Fitvalue,cumsump]=fitnessfun(population);
%记录当前代最好的适应度和平均适应度
[fmax,nmax]=max(Fitvalue);
fmean=mean(Fitvalue);
ymax(Generation)=fmax;
ymean(Generation)=fmean;
%记录当前代的最佳染色体个体
x=transform2to10(population(nmax,:));
%自变量取值范围是[-2 2],需要把经过遗传运算的最佳染色体整合到[-2 2]区间
xx=boundsbegin+x*(boundsend-boundsbegin)/(power(2,BitLength)-1);
xmax(Generation)=xx;
Generation=Generation+1;
end
Generation=Generation-1;
Bestpopuation=xx;
Besttargetfunvalue=targetfun(xx);
%绘制经过遗传运算后的适应度曲线。一般地,如果进化过程中种群的平均适应度与最大适
%应度在曲线上有相互趋同的形态,表示算法收敛进行得很顺利,没有出现震荡;在这种前
%提下,最大适应度个体连续若干代都没有发生进化表明种群已经成熟
figure(1);
hand1=plot(1:Generation,ymax);
set(hand1,'linestyle','-','linewidth',1.8,'marker','*','markersize',6)
hold on;
hand2=plot(1:Generation,ymean);
set(hand2,'color','r','linestyle','-','linewidth',1.8,'marker','h','markersize',6)
xlabel('进化代数');ylabel('(最大/平均适应度)');xlim([1 Generationmax]);
legend('最大适应度','平均适应度');
box off;hold off;
y=(x(i)-k(i))^2-10*sin(2*pi*(x(i)-k(i)))+10;
end
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询