偶函数f(x)满足f(x-1)=f(x+1),且当x∈[0,1]时,f(x)=-x+1,
展开全部
答:
偶函数f(x)满足:f(-x)=f(x)
因为:f(x-1)=f(x+1)=f(x-1+2)
所以:f(x)=f(x+2),f(x)的周期为2
0<=x<=1时,f(x)=-x+1
-1<=x<=0时,0<=-x<=1代入上式得:
f(-x)=x+1=f(x)
所以:-1<=x<=0时,f(x)=x+1
所以:0<=f(x)<=1恒成立
设g(x)=lg(x+1)<=1,0<x+1<=10
所以:-1<x<=9
(-1,9]区间分成(-1,1],[1,3],[3,5],[5,7],[7,9]
每个区间中点处f(x)=1,端点处f(x)=0
对应区间f(x)=g(x)=lg(x+1)的交点个数分别为:
1、2、2、2、2
共有1+2*4=9个交点
所以:f(x)=lg(x+1),0<=x<=9上的解有9个
偶函数f(x)满足:f(-x)=f(x)
因为:f(x-1)=f(x+1)=f(x-1+2)
所以:f(x)=f(x+2),f(x)的周期为2
0<=x<=1时,f(x)=-x+1
-1<=x<=0时,0<=-x<=1代入上式得:
f(-x)=x+1=f(x)
所以:-1<=x<=0时,f(x)=x+1
所以:0<=f(x)<=1恒成立
设g(x)=lg(x+1)<=1,0<x+1<=10
所以:-1<x<=9
(-1,9]区间分成(-1,1],[1,3],[3,5],[5,7],[7,9]
每个区间中点处f(x)=1,端点处f(x)=0
对应区间f(x)=g(x)=lg(x+1)的交点个数分别为:
1、2、2、2、2
共有1+2*4=9个交点
所以:f(x)=lg(x+1),0<=x<=9上的解有9个
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解的个数是
9个
9个
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询