在四边形纸片ABCD中,AD//BC,AD>CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C

在四边形纸片ABCD中,AD//BC,AD>CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C'处,折痕DE交BC于点E,连接C'E.(1)求证:四边形CDC'E是菱... 在四边形纸片ABCD中,AD//BC,AD>CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C'处,折痕DE交BC于点E,连接C'E.(1)求证:四边形CDC'E是菱形。(2)若BC=CD+AD,试判断四边形ABCD的形状,并加以证明。 展开
 我来答
tyq1997
2014-03-20 · TA获得超过11.1万个赞
知道大有可为答主
回答量:2.4万
采纳率:94%
帮助的人:2989万
展开全部
(1)依题意∠C′DE=∠CDE,CD=C′D,CE=C′E,又AD∥BC,∴∠C′DE=∠DEC,∴∠DEC=∠CDE,∴CD=CE,则四边相等,可得四边形CDC′E是菱形;
(2)四边形ABED为平行四边形,由题意易证明AD=BE,又AD∥BC,可得AD∥BE,∴四边形ABED为平行四边形可证明AD与BE平行且相等.
解答:(1)证明:依题意∠C′DE=∠CDE,CD=C′D,CE=C′E,(1分)
∵AD∥BC,
∴∠C′DE=∠DEC. (2分)
∴∠DEC=∠CDE.
∴CD=CE. (3分)
故CD=CE=C′D=C′E,四边形CDC′E是菱形.(4分)

(2)解:四边形ABED为平行四边形.(5分)
证明:∵BC=CD+AD,又CD=CE,
∴BC=CE+AD.(6分)
又BC=CE+BE,
∴AD=BE.(7分)
又AD∥BC,可得AD∥BE.
∴四边形ABED为平行四边形.(8分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式