已知数列{an}中,已知a1=1,an+1=((2n+2)/n)an
2个回答
展开全部
(1)
a(n+1)=((2n+2)/n)an
a(n+1)/(n+1) = 2(an/n)
{an/n}是等比数列, q=2
an/n = 2^(n-1) . (a1/1)
=2^(n-1)
an = n.2^(n-1)
(2)
let
S =1.2^0+2.2^1+...+n.2^(n-1) (1)
2S = 1.2^1+2.2^2+...+n.2^n (2)
(2)-(1)
S = n.2^n-(1+2+...+2^(n-1))
=n.2^n - (2^n-1)
= 1+(n-1).2^n
Sn =a1+a2+...+an
=S
=1+(n-1).2^n
a(n+1)=((2n+2)/n)an
a(n+1)/(n+1) = 2(an/n)
{an/n}是等比数列, q=2
an/n = 2^(n-1) . (a1/1)
=2^(n-1)
an = n.2^(n-1)
(2)
let
S =1.2^0+2.2^1+...+n.2^(n-1) (1)
2S = 1.2^1+2.2^2+...+n.2^n (2)
(2)-(1)
S = n.2^n-(1+2+...+2^(n-1))
=n.2^n - (2^n-1)
= 1+(n-1).2^n
Sn =a1+a2+...+an
=S
=1+(n-1).2^n
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询