在用SPSS做一个线性回归分析,结果如图,R方很低,但是显著性都还可以。问题是这个模型预测效果很差。

平均相对误差有90%多,请问这是怎么回事,有什么办法优化吗?... 平均相对误差有90%多,请问这是怎么回事,有什么办法优化吗? 展开
 我来答
小无谈旅游百科
高粉答主

2020-06-14 · 每个回答都超有意思的
知道小有建树答主
回答量:824
采纳率:98%
帮助的人:18万
展开全部

用户可以先试着画一个散点图,看看是否可以使用其他曲线来获得更好的拟合效果,在很多情况下,对数据进行线性或某些非线性拟合会有显著的效果,但可能不是最好的,所以有必要判断自变量与因变量之间是否呈线性关系。

R方和调整后的R方是对模型拟合效果的描述,调整后的R方更准确,即自变量对因变量的解释率为27.8%,T为各自变量是否有显著影响的检验,具体的显著性仍然取决于随后的P值,如果p值< 0.05,则自变量影响显著。

扩展资料:

注意事项:

多元线性回归的基本原理和基本计算过程与一元线性回归相同。但由于自变量较多,计算比较麻烦。在实际应用中,一般需要统计软件。这里只介绍了多元线性回归的基本问题。

但由于每个独立变量单位可能不同,如消费水平之间的关系、工资水平、教育水平、职业、地区、家庭负担,等等因素会影响消费水平,而这些影响因素(自变量)单位显然是不同的,所以独立变量系数的大小并不意味着之前的因素重要程度。

简单地说,相同工资收入以元计算的回归系数小于以百元计算的回归系数。然而,工资水平对消费的影响并没有改变。因此,有必要寻找一种方法将自变量积分为统一单位。我们之前学过的标准分数有这个功能。

首先将所有变量包括因变量转化为标准分数,然后进行线性回归。在这种情况下,得到的回归系数可以反映相应自变量的重要性。

吕秀才
推荐于2017-12-15 · 知道合伙人金融证券行家
吕秀才
知道合伙人金融证券行家
采纳数:3165 获赞数:19827
2007年心理学硕士毕业,从事市场研究与分析工作多年,善于营

向TA提问 私信TA
展开全部
你可以尝试着先绘制下散点图看看 会不会用其他曲线拟合的效果会更好,很多时候数据用线性和一些非线性拟合后都会有显著效果,但是不一定是最佳的,所以需要判断自变量和因变量之间关系是否符合线性。
如果仍然是符合线性趋势,但是你只有这么一个自变量的话,那就没有办法优化了,如果还有其他自变量,可以尝试着引入之后 再看回归效果
追问

就是说我这个特征可以解释一部分因变量,但是还不够,还需要找其他的特征来共同解释因变量嘛?


我回归的时候实际上是有六个特征的,但是由于sig值大于0.05SPSS自动排除了这些特征。那我这些被排除的特征就不能再用了?还是说可以用这些特征的线性组合得到新的特征再试试呢?谢谢你。

追答
意思就是你说的意思,但是未必你之前找的六个特征就对,有可能还有其他你未发现的变量会有影响,总之这个统计的分析 要达到最佳效果,要不断的尝试
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
SPSSAU
2023-07-07 · 百度认证:SPSSAU官方账号,优质教育领域创作者
SPSSAU
SPSSAU,也称"在线SPSS",一款网页版数据科学算法平台系统,提供"拖拽点一下"的极致体验和智能化分析结果。
向TA提问
展开全部

在用SPSS做一个线性回归分析,结果如图,R方很低,但是显著性都还可以。问题是这个模型预测效果很差。

R方测度了回归直线对观测数据的拟合程度,如果说所有的观测点都落在直线上,则SSE=0,此时R方=1,拟合是完全的,如果y的变化与X无关,则SSR=0,也就是 R方=0,所以可以得到R方的取值范围在【0,1】,同时根据计算公式,也可以得到,R方越接近1说明SSR占SST的占比越大,也就是说明模型拟合越好,反之,如果R方越接近1,说明SSR占SST的占比越小,被解释部分越少,模型拟合越差。

一般在线性回归模型中,如果R方值为0.25,则说明这只能解释模型总变差的25%,但是在模型中研究者更多会关注自变量对因变量是否有影响,R方只是简单的输出说明。

R方可以自己计算也可以借助数据分析工具进行输出,这里利用SPSSAU举例进行说明。

从结果可以看出,不良贷款(亿元)会对本年累计应收贷款(亿元)产生显著的正向影响关系。贷款项目个数(个)并不会对本年累计应收贷款(亿元)产生影响关系。并且模型R方值为0.556,意味着不良贷款(亿元),贷款项目个数(个)可以解释本年累计应收贷款(亿元)的55.6%变化原因。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式