高一数学,求帮助

ouyzs
2013-12-15 · TA获得超过3302个赞
知道小有建树答主
回答量:481
采纳率:100%
帮助的人:433万
展开全部

供参考

黎齐散夜n
2013-12-15 · TA获得超过2428个赞
知道小有建树答主
回答量:475
采纳率:100%
帮助的人:357万
展开全部
解:f(1/x)=(b/x+1)/(2/x+a)=(b+x)/(2+ax)
k=f(x)f(1/x)=[(bx+1)/(2x+a)][(b+x)/(2+ax)]
=(b/2a)[(x+1/b)/(x+a/2)][(b+x)/(x+2/a)]
x+1/b=x+2/a且b+x=x+a/2
∴1/b=2/a且b=a/2
a=2b
k=(b/4b)[(x+1/b)/(x+b)][(b+x)/(x+1/b)]
=1/4
∴k=1/4
但是[(bx+1)/(2x+a)][(b+x)/(2+ax)]
=(b/2a)[(x+1/b)/(x+a/2)][(b+x)/(x+2/a)]
更多追问追答
追问
解:f(1/x)=(b/x+1)/(2/x+a)=(b+x)/(2+ax) 
k=f(x)f(1/x)=[(bx+1)/(2x+a)][(b+x)/(2+ax)]
=(b/2a)[(x+1/b)/(x+a/2)][(b+x)/(x+2/a)]
x+1/b=x+2/a且b+x=x+a/2
∴1/b=2/a且b=a/2
a=2b
k=(b/4b)[(x+1/b)/(x+b)][(b+x)/(x+1/b)]
=1/4
∴kbx+1)/(2x+a)][(b+x)/(2+ax)]
=(b/2a)[(x+1/b)/(x+a/2)][(b+x)/(x+2/a)]
对不起点错了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-12-15
展开全部
哥哥哥哥哥哥斤斤计较
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式