已知,M是等边△ABC边BC上的点. (1)如图1,过点M作MN∥AC,且交AB于点N,求证:B

M=BN;(2)如图2,连接AM,过点M作∠AMH=60°,MH与∠ACB的邻补角的平分线交与点H,过H作HD⊥BC于点D.①求证:MA=MH;  ②... M=BN;(2)如图2,连接AM,过点M作∠AMH=60°,MH与∠ACB的邻补角的平分线交与点H,过H作HD⊥BC于点D.①求证:MA=MH;  ②猜想写出CB,CM,CD之间的数量关系式,并加于证明;(3)如图3,(2)中其它条件不变,若点M在BC延长线上时,(2)中两个结论还成立吗?若不成立请直接写出新的数量关系式(不必证明). 展开
 我来答
我不是来喜吗
2013-11-16 · TA获得超过2.5万个赞
知道小有建树答主
回答量:4608
采纳率:98%
帮助的人:222万
展开全部

(1)证明:∵MN∥AC
∴∠BMN=∠C=60°,∠BNM=∠B=60°,
∴∠BMN=∠BNM,
∴BM=BN;

(2)①证明:过M点作MN∥AC交AB于N,
则BM=BN,∠ANM=120°
∵AB=BC,
∴AN=MC,
∵CH是∠ACB外角平分线,所以∠ACH=60°,
∴∠MCH=∠ACB+∠ACH=120°,
又∵∠NMC=120°,∠AMH=60°,
∴∠HMC+∠AMN=60°
又∵∠NAM+∠AMN=∠BNM=60°,
∴∠HMC=∠MAN,
在△ANM和△MCH中
∠ANM=∠MCH    

AN=MC  

∠HMC=∠MAN

∴△AMN≌△MHC(ASA),

∴MA=MH;

②CB=CM+2CD;
证明:过M点作MG⊥AB于G,
∵△AMN≌△MHC,
∴MN=HC,
∵MN=MB,
∴HC=BM,
∵△BMN为等边三角形,
∴BM=2BG,
在△BMG和△CHD中
∠B=∠HCD    
∠MGB=∠HDC    

HC=MB  

∴△BMG≌△CHD(AAS),

∴CD=BG,

∴BM=2CD
所以BC=MC+2CD;

(3)(2)中结论①成立,
②不成立,CB=2CD-CM.

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式