如图、在平形四边形ABCD中、E是CD的中点、F是AE的中点、FC与BE相交于点G、求证:GF=G
如图、在平形四边形ABCD中、E是CD的中点、F是AE的中点、FC与BE相交于点G、求证:GF=GC...
如图、在平形四边形ABCD中、E是CD的中点、F是AE的中点、FC与BE相交于点G、求证:GF=GC
展开
2个回答
2014-03-22
展开全部
证明:
取BE的中点H,连接FH、CH
∵F、G分别是AE、BE的中点
∴FH是△ABE的中位线
∴FH∥AB FH=1/2*AB
∵四边形ABCD是平行四边形
∴CD∥AB CD=AB
∵E是CD的中点
∴CE=1/2*AB
∵CE=1/2*AB FH=1/2*AB
∴CE=FH
∵CE∥AB FH∥AB
∴FH∥CE
∵FH∥CE CE=FH
∴四边形CEFH是平行四边形
∴FG=CG(平行四边形的对角线互相平分)
取BE的中点H,连接FH、CH
∵F、G分别是AE、BE的中点
∴FH是△ABE的中位线
∴FH∥AB FH=1/2*AB
∵四边形ABCD是平行四边形
∴CD∥AB CD=AB
∵E是CD的中点
∴CE=1/2*AB
∵CE=1/2*AB FH=1/2*AB
∴CE=FH
∵CE∥AB FH∥AB
∴FH∥CE
∵FH∥CE CE=FH
∴四边形CEFH是平行四边形
∴FG=CG(平行四边形的对角线互相平分)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询