1个回答
2014-08-31 · 知道合伙人软件行家
关注
展开全部
解
要想满足条件:集合A={x2-4mx +2m+ 6=0,x∈R},B={x<0.,x∈R},若A∩B≠空集
必须使:方程x2-4mx +2m+ 6=0有实数根,且至少有一个负实数根。因此有不等式:
△=(4m)²-4*1*(2m+ 6)≥0
x1=[4m-√△]/2*1<0 (最小的根为负,就可保证A∩B≠空集)
解得不等式组得解为:m≤-1。即实数m的取值范围是m∈(-∞,-1)
要想满足条件:集合A={x2-4mx +2m+ 6=0,x∈R},B={x<0.,x∈R},若A∩B≠空集
必须使:方程x2-4mx +2m+ 6=0有实数根,且至少有一个负实数根。因此有不等式:
△=(4m)²-4*1*(2m+ 6)≥0
x1=[4m-√△]/2*1<0 (最小的根为负,就可保证A∩B≠空集)
解得不等式组得解为:m≤-1。即实数m的取值范围是m∈(-∞,-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询