初二数学,求解,正确必采纳 9/11
2个回答
展开全部
∵∠ADC+∠FCD=90°,∠F+∠FCD=90°
∴∠F=∠ADC
又∵AC=BC,∠C=∠CDF
△ACD≌△CFD(AAS)
∴CD=BF
∴DB=BF
∴△FDB是等腰三角形
又∵AC⊥BC,AC‖BF
∴FB⊥BC
∴∠FBC=90°
又∵∠ABC=45°
∴∠FBA=45°
∴AB垂直平分DF(三线合一)
∴∠F=∠ADC
又∵AC=BC,∠C=∠CDF
△ACD≌△CFD(AAS)
∴CD=BF
∴DB=BF
∴△FDB是等腰三角形
又∵AC⊥BC,AC‖BF
∴FB⊥BC
∴∠FBC=90°
又∵∠ABC=45°
∴∠FBA=45°
∴AB垂直平分DF(三线合一)
追问
为什么∠f+∠fcd=90
∠f是哪个角?
为什么∠c=∠cdf?
追答
抱歉做错了,,,答案如下
证明:连接DF,
∵∠BCE+∠ACE=90°,∠ACE+∠CAE=90°,
∴∠BCE=∠CAE.
∵AC⊥BC,BF∥AC.
∴BF⊥BC.
∴∠ACD=∠CBF=90°,
∵AC=CB,
∴△ACD≌△CBF.∴CD=BF.
∵CD=BD=1/2 BC,∴BF=BD.
∴△BFD为等腰直角三角形.
∵∠ACB=90°,CA=CB,
∴∠ABC=45°.
∵∠FBD=90°,
∴∠ABF=45°.
∴∠ABC=∠ABF,即BA是∠FBD的平分线.
∴BA是FD边上的高线,BA又是边FD的中线,
即AB垂直平分DF.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询