设f1,f2分别为双曲线x2/a2-y2/b2=1的左右焦点,双曲线上存在一点p使得pf1+pf =3b,pf1pf2=9/4ab,则该双曲线的离心率为... =3b,pf1pf2=9/4ab,则该双曲线的离心率为 展开 我来答 可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。 双曲线 f1 a2-y2 b2 焦点 搜索资料 你的回答被采纳后将获得: 系统奖励15(财富值+成长值)+难题奖励30(财富值+成长值) 1个回答 #合辑# 机票是越早买越便宜吗? 飞吻福牛 推荐于2020-12-08 知道答主 回答量:5 采纳率:0% 帮助的人:5090 我也去答题访问个人页 关注 展开全部 |PF1|*|PF2|=9/4ab ∵( |PF1|+|PF2| )^2-( |PF1|-|PF2| )^2=4|PF1|*|PF2| 即9b^2-4a^2=9ab 即(4a-3b)(a+3b)=0 ∴4a=3b 不妨令a=3m b=4m (m>0) 故c=√a^2+b^2=5m 即e=c/a=5/3 本回答被网友采纳 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: