已知函数f(x)=e^x+a/e^x,若函数y=|f(x)|在[0,1]上单调递增求实数a的取值范
已知函数f(x)=e^x+a/e^x,若函数y=|f(x)|在[0,1]上单调递增求实数a的取值范围...
已知函数f(x)=e^x+a/e^x,若函数y=|f(x)|在[0,1]上单调递增求实数a的取值范围
展开
1个回答
展开全部
(1)解:f(x)=e^x+a/e^x,f'(x)=e^x-a/e^x,f(0)=1+a,f(1)=e+a/e,
因为函数y=|f(x)|在[0,1]上单调递增,
所以f(0)>=0且f'(x)>0(0<x<1)或f(0)<=0且f'(x)<0(0<x<1)
由f(0)=1+a>=0和f'(x)=e^x-a/e^x>0(0<x<1),解得:-1<=a<1;
由f(0)=1+a<=0和f'(x)=e^x-a/e^x<0(0<x<1),解得:无解
综上,满足题设条件的实数a范围是:-1<=a<1
(2)证明:由(1)得,f(x)+f '(x)=2e^x,h(x)=(1/2)*(x^2-3x+3)[f(x)+f '(x)]=(e^x)*(x^2-3x+3),
h'(x)=(e^x)*(x^2-3x+3)+(e^x)*(2x-3)=(e^x)*(x^2-x),h'(x)/(e^x)=x^2-x,
令F(x)=3h'(x)/(e^x)-2*(t-1)^2=3*(x^2-x)-2*(t-1)^2=3x^2-3x-2(t-1)^2
F'(x)=6x-3,当x<1/2时,F'(x)<0;当x=1/2时,F'(x)=0;当x>1/2时,F'(x)>0.
即F(x):当-2<x<1/2时单调递减;当x>1/2时单调递增;当x=1/2时,F(x)有最小值
(I)当-2<t<=1/2时,F(x=t)=t^2+t-2<F(x)<F(x=-2)=-2t^2+4t+16,
(-1/2)^2+(-1/2)-2=-9/4<=F(x=t)=t^2+t-2<(-2)^2+(-2)-2=0;
-2(-2)^2+4*(-2)+16=0<F(x=-2)=-2t^2+4t+16<=-2(1/2)^2+4*(1/2)+16=35/2
所以,当-2<t<=1/2时,F(x)=0在-2<x<t上有唯一解,即存在唯一x1属于(-2,t),满足h '(x1)/e^x1 =(2/3)*(t-1)^2
(II)当t>1/2时,F(x=1/2)=-2t^2+4t-11/4<=F(x)<max{F(x=t),F(x=-2)}=max{t^2+t-2,-2t^2+4t+16}
由t^2+t-2=-2t^2+4t+16,解得t=-2(舍去)或t=3
当1/2<t<3时,F(x)=0在-2<x<t上有唯一解,即存在唯一x1属于(-2,t),满足h '(x1)/e^x1 =(2/3)*(t-1)^2;
当t>=3时,F(x)=0在-2<x<t上有2个解,即存在2个不等实数x1,x2属于(-2,t),满足h '(xi)/e^xi =(2/3)*(t-1)^2(i=1,2)
希望对你能有所帮助。
因为函数y=|f(x)|在[0,1]上单调递增,
所以f(0)>=0且f'(x)>0(0<x<1)或f(0)<=0且f'(x)<0(0<x<1)
由f(0)=1+a>=0和f'(x)=e^x-a/e^x>0(0<x<1),解得:-1<=a<1;
由f(0)=1+a<=0和f'(x)=e^x-a/e^x<0(0<x<1),解得:无解
综上,满足题设条件的实数a范围是:-1<=a<1
(2)证明:由(1)得,f(x)+f '(x)=2e^x,h(x)=(1/2)*(x^2-3x+3)[f(x)+f '(x)]=(e^x)*(x^2-3x+3),
h'(x)=(e^x)*(x^2-3x+3)+(e^x)*(2x-3)=(e^x)*(x^2-x),h'(x)/(e^x)=x^2-x,
令F(x)=3h'(x)/(e^x)-2*(t-1)^2=3*(x^2-x)-2*(t-1)^2=3x^2-3x-2(t-1)^2
F'(x)=6x-3,当x<1/2时,F'(x)<0;当x=1/2时,F'(x)=0;当x>1/2时,F'(x)>0.
即F(x):当-2<x<1/2时单调递减;当x>1/2时单调递增;当x=1/2时,F(x)有最小值
(I)当-2<t<=1/2时,F(x=t)=t^2+t-2<F(x)<F(x=-2)=-2t^2+4t+16,
(-1/2)^2+(-1/2)-2=-9/4<=F(x=t)=t^2+t-2<(-2)^2+(-2)-2=0;
-2(-2)^2+4*(-2)+16=0<F(x=-2)=-2t^2+4t+16<=-2(1/2)^2+4*(1/2)+16=35/2
所以,当-2<t<=1/2时,F(x)=0在-2<x<t上有唯一解,即存在唯一x1属于(-2,t),满足h '(x1)/e^x1 =(2/3)*(t-1)^2
(II)当t>1/2时,F(x=1/2)=-2t^2+4t-11/4<=F(x)<max{F(x=t),F(x=-2)}=max{t^2+t-2,-2t^2+4t+16}
由t^2+t-2=-2t^2+4t+16,解得t=-2(舍去)或t=3
当1/2<t<3时,F(x)=0在-2<x<t上有唯一解,即存在唯一x1属于(-2,t),满足h '(x1)/e^x1 =(2/3)*(t-1)^2;
当t>=3时,F(x)=0在-2<x<t上有2个解,即存在2个不等实数x1,x2属于(-2,t),满足h '(xi)/e^xi =(2/3)*(t-1)^2(i=1,2)
希望对你能有所帮助。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询