在三角形ABC中,角A,B,C的对边分别是a,b,c,证明:(a的平方减b的平方)/c的平方等于sin(A减B)/sinC。

急需。... 急需。 展开
天天篔蔶MG2a
2014-08-04 · 超过56用户采纳过TA的回答
知道答主
回答量:117
采纳率:0%
帮助的人:106万
展开全部
证明:(a^2-b^2)/c^2=(a-b)(a+b)/c^2=(sinA-sinB)(sinA+sinB)/sinC^2 (正弦定理), 又A=(A+B)/2+(A-B)/2, 故sinA=[sin(A+B)/2]*[cos(A-B)/2]+[sin(A-B)/2]*[cos(A+B)/2], 易得sinA-sinB=2[sin(A-B)/2]*[cos(A+B)/2], 同理sinA+sinB=2[sin(A+B)/2]*[cos(A-B)/2], 故(sinA-sinB)(sinA+sinB)=sin(A+B)sin(A-B), 又sin(A+B)=sinC, 所以原命题得证 。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式