初二数学 求解!谢谢!
3个回答
展开全部
解:如图,连接OP.
由已知可得:∠PMO=∠MON=∠ONP=90°.
∴四边形ONPM是矩形.
∴OP=MN,
在Rt△AOB中,当OP⊥AB时OP最短,即MN最小.
∵A(0,4),B(3,0),即AO=4,BO=3,
根据勾股定理可得AB=5.
∵S△AOB=
1
2
AO•BO=
1
2
AB•OP,
∴OP=
12
5
.
∴MN=
12
5
.
即当点P运动到使OP⊥AB于点P时,MN最小,最小值为
12
5
;
在Rt△POB中,根据勾股定理可得:BP=
9
5
,
∵S△OBP=
1
2
OP•BP=
1
2
OB•PN.
∴PN=
36
25 ( 中间是分号
.
由已知可得:∠PMO=∠MON=∠ONP=90°.
∴四边形ONPM是矩形.
∴OP=MN,
在Rt△AOB中,当OP⊥AB时OP最短,即MN最小.
∵A(0,4),B(3,0),即AO=4,BO=3,
根据勾股定理可得AB=5.
∵S△AOB=
1
2
AO•BO=
1
2
AB•OP,
∴OP=
12
5
.
∴MN=
12
5
.
即当点P运动到使OP⊥AB于点P时,MN最小,最小值为
12
5
;
在Rt△POB中,根据勾股定理可得:BP=
9
5
,
∵S△OBP=
1
2
OP•BP=
1
2
OB•PN.
∴PN=
36
25 ( 中间是分号
.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为PM⊥AO ,PN⊥OB ,所以四边形OMPN 为矩形,MN=OP
因为△OAB为直角△,所以OP⊥AB 时,OP最短,即MN最短
AB=5,所以OP=MN=12/5,PN=12/7
因为△OAB为直角△,所以OP⊥AB 时,OP最短,即MN最短
AB=5,所以OP=MN=12/5,PN=12/7
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询